精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出它关于原点的对称点称为一次变换,已知点A的坐标为(﹣2,0),把点A经过连续2014次这样的变换得到的点A2014的坐标是_____

【答案】(0,2).

【解析】由题意在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出它关于原点的对称点称为一次变换,可得

第一次旋转后的坐标为(),

第二次旋转后的坐标为(0,﹣2),

第三次旋转后的坐标为(﹣),

第四次旋转后的坐标为(2,0),

第五次旋转后的坐标为(﹣,﹣),

第六次旋转后的坐标为(0,2),

第七次旋转后的坐标为(,﹣),

第八次旋转后的坐标为(﹣2,0)

因为2014÷8=251…6,

所以把点A经过连续2014次这样的变换得到的点2014的坐标是(0,2).

故答案是:(0,2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=4,E,F分别是边BC,CD边上的动点,且AE=AF,设△AEF的面积为y,EC的长为x.

(1)求y与x之间的函数表达式,并写出自变量x的取值范围.
(2)当x取何值时,△AEF的面积最大,最大面积是多少?
(3)在直角坐标系中画出y关于x的函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于反比例函数y= 的图象,下列说法正确的是(
A.图象经过点(1,1)
B.两个分支分布在第二、四象限
C.两个分支关于x轴成轴对称
D.当x<0时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小方格都是边长为1个单位长度的正方形,△ABC的顶点和点O均在网格图的格点上,将△ABC绕点O逆时针旋转90°,得到△A1B1C1
(1)请画出△A1B1C1
(2)以点O为圆心, 为半径作⊙O,请判断直线AA1与⊙O的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△AOB中点O是原点,点A在y轴上,点B的坐标是(2 ,2),小明做一个数学实验,在x轴上取一动点C,以AC为一边画出等边△ACP,移动点C时,探究点P的位置变化情况.

(1)如图,小明将点C移至x轴负半轴,在AC的右侧画出等边△ACP,并使得顶点P在第三象限时,连接BP,求证:△AOC≌△ABP;
(2)小明在x轴上移动点C,并在AC的右侧画出等边△ACP时,发现点P在某函数图象上,请求出点P所在函数图象的解析式.
(3)小明在x轴上移动点C点时,若在AC的左侧画出等边△ACP,点P会不会在某函数图象上?若会在某函数图象上,请直接写出该函数图象的解析式,若不在某函数图象上,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】投掷一枚质地均匀的正方体骰子.

(1)下列说法中正确的有 (填序号)

①向上一面点数为1点和3点的可能性一样大;

②投掷6次,向上一面点数为1点的一定会出现1次;

③连续投掷2次,向上一面的点数之和不可能等于13.

(2)如果小明连续投掷了10次,其中有3次出现向上一面点数为6点,这时小明说:投掷正方体骰子,向上一面点数为6点的概率是你同意他的说法吗?说说你的理由.

(3)为了估计投掷正方体骰子出现6点朝上的概率,小亮采用转盘来代替骰子做实验.下图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上红、白两种颜色,使得转动转盘,当转盘停止转动后,指针落在红色区域的概率与投掷正方体骰子出现6点朝上的概率相同.(友情提醒:在转盘上用文字注明颜色和扇形圆心角的度数.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,直线EFAB、CD分别相交于点E、F.

(1)如图1,若∠1=120°,2=60°,求证ABCD;

(2)在(1)的情况下,若点P是平面内的一个动点,连结PE、PF,探索∠EPF、PEB、PFD三个角之间的关系;

①当点P在图2的位置时,可得∠EPF=PEB+∠PFD;

请阅读下面的解答过程,并填空(理由或数学式)

解:如图2,过点PMNAB,

则∠EPM=PEB_____

ABCD(已知),MNAB(作图)

MNCD_____

∴∠MPF=PFD

∴∠_____+∠_____=PEB+∠PFD(等式的性质)

即∠EPF=PEB+∠PFD

②当点P在图3的位置时,∠EPF、PEB、PFD三个角之间有何关系并证明.

③当点P在图4的位置时,请直接写出∠EPF、PEB、PFD三个角之间的关系:_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图所示的一块地,已知AD=12米,CD=9米,∠ADC=90,AB=39米,BC=36米,求这块地的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分别为E,F.

(1)求证:ABE≌△CDF;

(2)若AC与BD交于点O,求证:AO=CO.

查看答案和解析>>

同步练习册答案