精英家教网 > 初中数学 > 题目详情
11.用火柴棒按下图所示的方式摆大小不同的“H”:

依此规律,摆出第9个“H”需用火柴棒29根.

分析 根据已知图形得出数字变化规律,进而求出答案.

解答 解:如图所示:第1个图形有3+2=5根火柴棒,
第2个图形有3×2+2=8根火柴棒,
第3个图形有3×3+2=11根火柴棒,
故第n个图形有3n+2根火柴棒,
则第9个“H”需用火柴棒:3×9+2=29(根).
故答案为:29.

点评 此题主要考查了图形变化类,根据题意得出火柴棒的变化规律是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.直线y=3x+m的图象一定经过(  )
A.第一、二象限B.第二、四象限C.第一、三象限D.第二、三象限

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是(  )
A.两点之间,线段最短B.直角三角形的两个锐角互余
C.三角形三个内角和等于180°D.三角形具有稳定性

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,已知二次函数y=ax2+$\frac{3}{2}$x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.
(1)请直接写出二次函数y=ax2+$\frac{3}{2}$x+c的表达式;
(2)判断△ABC的形状,并说明理由;
(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;
(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).
(1)请按要求画图:
①画出△ABC向左平移5个单位长度后得到的△A1B1C1
②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2
(2)请写出直线B1C1与直线B2C2的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两类玩具,其中A类玩具的进价比B类玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同.设A类玩具的进价为m元/个,根据题意可列分式方程为(  )
A.$\frac{900}{m}=\frac{750}{m+3}$B.$\frac{900}{m+3}=\frac{750}{m}$C.$\frac{900}{m}=\frac{750}{m-3}$D.$\frac{900}{m-3}=\frac{750}{m}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式.
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户每天能否获得比150元更大的利润?如果能请求出最大利润,如果不能请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.若(x+2)(x-3)>0,则x的取值范围是x>3或x<-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,在平面直角坐标系xOy内,已知点A(-1,0),B(-1,1),C(1,0),D(1,1),记线段AB为T1,线段CD为T2,点P是坐标系内一点.给出如下定义:若存在过点P的直线l与T1,T2都有公共点,则称点P是T1-T2联络点.例如,点P$(0,\frac{1}{2})$是T1-T2联络点.
(1)以下各点中,②③是T1-T2联络点(填出所有正确的序号);
①(0,2);②(-4,2);③(3,2).
(2)直接在图1中画出所有T1-T2联络点所组成的区域,用阴影部分表示;
(3)已知点M在y轴上,以M为圆心,r为半径画圆,⊙M上只有一个点为T1-T2联络点,
①若r=1,求点M的纵坐标;
②求r的取值范围.

查看答案和解析>>

同步练习册答案