精英家教网 > 初中数学 > 题目详情

【题目】1)如图(1)在ABC中,∠BAC90°ABAC,直线m经过点ABD⊥直线mCE⊥直线m,垂足分别为点DE.求证:DEBD+CE

2)如图(2)将(1)中的条件改为:在ABC中,ABACDAE三点都在直线m上,并且有∠BDA=∠AEC=∠BACα,其中α为任意锐角或钝角.请问结论DEBD+CE是否成立?如成立,请给出证明;若不成立,请说明理由.

【答案】(1)见解析;(2)成立,理由见解析

【解析】

1)根据AAS证明ADB≌△CEA,得到AEBDADCE,即可证明;

2)同理证明ADB≌△CEA,得到AEBDADCE,即可证明;

证明:(1BD直线mCE直线m

∴∠BDACEA90°

∵∠BAC90°

∴∠BAD+∠CAE90°

∵∠BAD+∠ABD90°

∴∠CAEABD

ADBCEA中,

∴△ADB≌△CEAAAS),

AEBDADCE

DEAE+ADBD+CE

2∵∠BDABACα

∴∠DBA+∠BADBAD+∠CAE180°α

∴∠CAEABD

ADBCEA中,

∴△ADB≌△CEAAAS),

AEBDADCE

DEAE+ADBD+CE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一辆货车从百货大楼出发负责送货,向东走了 5 千米到达小明家,继续向东走了 1.5 千米到达小红家,然后向西走了 9.5 千米到达小刚家,最后返回百货大楼.

(1)以百货大楼为原点,向东为正方向,1 个单位长度表示 1 千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点 A 表示,小红家用点 B 表示,小刚家用点 C 表示)

(2)小明家与小刚家相距多远?

(3)若货车每千米耗油 0.6 升,那么这辆货车此次送货共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:小刚站在河边的点处,在河的对面(小刚的正北方向)的处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了30步到达一棵树处,接着再向前走了30步到达处,然后他左转直行,当小刚看到电线塔、树与自己现处的位置在一条直线时,他共走了140步.

(1)根据题意,画出示意图;

(2)如果小刚一步大约50厘米,估计小刚在点处时他与电线塔的距离,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线与反比例函数的图象交于点,与轴交于点.

1)求的值及点的坐标;

2)过点 轴交反比例函数的图象于点,求点D的坐标和的面积;

3)观察图象,写出当x>0时不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农户承包荒山若干亩种植脐橙,投资59000元种植脐橙果树4000棵;今年脐橙总产量预测为60000千克,脐橙在市场上每千克售a元,在果园每千克售b元(ba).该农户将水果拉到市场出售平均每天出售2000千克,需4人帮忙,每人每天付工资100元,农用车运费及其他各项税费平均每天300元.

1)分别用ab表示两种方式出售水果的收入?

2)若a=2.5元,b=2元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好?

3)该农户加强果园管理,力争到明年纯收入达到84000元,而且该农户采用了(2)中较好的出售方式出售,那么纯收入增长率是多少(纯收入=总收入﹣总支出)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知点M14),N52),P03),Q30),过PQ两点的直线的函数表达式为y=﹣x+3,动点P从现在的位置出发,沿y轴以每秒1个单位长度的速度向上移动,设移动时间为ts

1)若直线PQ随点P向上平移,则:

t3时,求直线PQ的函数表达式.

当点MN位于直线PQ的异侧时,确定t的取值范围.

2)当点P移动到某一位置时,PMN的周长最小,试确定t的值.

3)若点P向上移动,点Q不动.若过点PQ的直线经过点Ax0y0),则x0y0需满足什么条件?请直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,对角线AC、BD相交于点O,且OA=OB.

(1)求证:四边形ABCD是矩形;

(2)若AB=6,AOB=120°,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC中,AB=AC=10cmBC=8cm,点DAB的中点.

1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;

若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?

2)若点Q中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

查看答案和解析>>

同步练习册答案