精英家教网 > 初中数学 > 题目详情

【题目】结果如此巧合!

下面是小颖对一道题目的解答.

题目:如图,RtABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.

解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.

根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.

根据勾股定理,得(x+3)2+(x+4)2=(3+4)2

整理,得x2+7x=12.

所以SABC=ACBC

=(x+3)(x+4)

=(x2+7x+12)

=×(12+12)

=12.

小颖发现12恰好就是3×4,即△ABC的面积等于ADBD的积.这仅仅是巧合吗?

请你帮她完成下面的探索.

已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.

可以一般化吗?

(1)若∠C=90°,求证:△ABC的面积等于mn.

倒过来思考呢?

(2)若ACBC=2mn,求证∠C=90°.

改变一下条件……

(3)若∠C=60°,用m、n表示△ABC的面积.

【答案】(1)证明见解析;(2)证明见解析;(3)SABC=mn;

【解析】

1)设ABC的内切圆分别与ACBC相切于点EFCE的长为x,仿照例题利用勾股定理得(xm2+(xn2=(mn2,再根据SABCAC×BC,即可证明SABCmn.(2)由ACBC=2mn,得x2+(mnxmn,因此AC2BC2=(xm2+(xn2AB2,利用勾股定理逆定理可得∠C=90°.(3)过点AAGBC于点G,在RtACG中,根据条件求出AGCG,又根据BGBCCG得到BG .RtABG中,根据勾股定理可得x2+(mnx=3mn,由此SABCBCAGmn.

ABC的内切圆分别与ACBC相切于点EFCE的长为x

根据切线长定理,得:AEADmBFBDnCFCEx

(1)如图1,

RtABC中,根据勾股定理,得:(xm2+(xn2=(mn2

整理,得:x2+(mnxmn

所以SABCACBC

xm)(xn

[x2+(mnxmn]

mnmn

mn;

(2)由ACBC=2mn,得:(xm)(xn)=2mn

整理,得:x2+(mnxmn

AC2BC2=(xm2+(xn2

=2[x2+(mnx]+m2n2

=2mnm2n2

=(mn2

AB2

根据勾股定理逆定理可得∠C=90°;

(3)如图2,过点AAGBC于点G

RtACG中,AGACsin60°=xm),CGACcos60°=xm),

BGBCCG=(xn)﹣xm),

RtABG中,根据勾股定理可得:[xm)]2+[(xn)﹣xm)]2=(mn2

整理,得:x2+(mnx=3mn

SABCBCAG

×(xnxm

[x2+(mnxmn]

×(3mnmn

mn

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx经过点A(﹣1,)及原点,交x轴于另一点C(2,0),点D(0,m)是y轴正半轴上一动点,直线AD交抛物线于另一点B.

(1)求抛物线的解析式;

(2)如图1,连接AO、BO,若OAB的面积为5,求m的值;

(3)如图2,作BEx轴于E,连接AC、DE,当D点运动变化时,AC、DE的位置关系是否变化?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行.直线沿轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),的函数图象如图2所示,则图1中的点的坐标为__________,图2中的值为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点在线段上运动(不与重合),连接,作交线段.

1)当时,______________;点运动时,逐渐变____________(填);

2)当时,求证:,请说明理由;

3)在点的运动过程中,的形状也在改变,判断当等于多少度时,是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有两个一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).

①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;

②如果方程M有两根符号相同,那么方程N的两根符号也相同;

③如果方程M和方程N有一个相同的根,那么这个根必是x=1;

④如果5是方程M的一个根,那么是方程N的一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,MBC上一点,FAM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N

1)求证:△ABM∽△EFA

2)若AB=12BM=5,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰直角三角形ABC的直角边的长是aADBD,且AD3BD,则BCD的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知CADCEB都是等边三角形,BDEA的延长线相交于点F

1)求证:ACE≌△DCB

2)求∠F的度数.

3)若ADBD,请直接写出线段EF与线段BDDF之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.20195月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解1060岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:

组别

年龄段

频数(人数)

1

5

2

3

35

4

20

5

15

1)请直接写出      ,第3组人数在扇形统计图中所对应的圆心角是   度.

2)请补全上面的频数分布直方图;

3)假设该市现有1060岁的市民300万人,问4050岁年龄段的关注本次大会的人数约有多少?

查看答案和解析>>

同步练习册答案