【题目】(1)如图矩形的对角线、交于点,过点作,且,连接,判断四边形的形状并说明理由.
(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由.
(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由.
【答案】(1)四边形的形状是菱形,理由见解析;(2)四边形的形状是矩形,理由见解析;(3)四边形的形状是正方形,理由见解析.
【解析】
(1)根据矩形的性质证得,再由有一组对边平行且相等的四边形是平行四边形证得四边形CODP是平行四边形,根据有一组邻边相等的平行四边形为菱形即可证得结论;(2)根据菱形的性质可得∠DOC=90°,再由有一组对边平行且相等的四边形是平行四边形证得四边形CODP是平行四边形,根据有一个角为直角的平行四边形为矩形即可证得结论;(3)根据正方形的性质可得OD=OC,∠DOC=90°,再由有一组对边平行且相等的四边形是平行四边形得出四边形CODP是平行四边形,根据正方形的判定即可证得结论.
(1)四边形的形状是菱形,
理由是:∵四边形是矩形,
∴,,,
∴,
∵,,
∴四边形是平行四边形,
∵,
∴平行四边形是菱形;
(2)四边形的形状是矩形,
理由是:∵四边形是菱形,
∴,
∴,
∵,,
∴四边形是平行四边形,
∵,
∴平行四边形是矩形;
(3)四边形的形状是正方形,
理由是:∵四边形是正方形,
∴,,,,
∴,,
∵,,
∴四边形是平行四边形,
∵,
∴平行四边形是正方形.
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=30°,点P为∠AOB内一点,OP=8.点M、N分别在OA、OB上.当△PMN周长最小时,下列结论:①∠MPN等于120°;②∠MPN等于100°;③△PMN周长最小值为4;④△PMN周长最小值为8,其中正确的是( )
A.①③B.②③C.①④D.②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,点、分别在、上,连接,、的平分线交于点,、的平分线交于点.
求证:四边形是矩形.
小明在完成的证明后继续进行了探索,过点作,分别交、于点、,过点作,分别交、于点、,得到四边形.此时,他猜想四边形是菱形.请在下列框图中补全他的证明思路.
小明的证明思路:由,,易证,四边形是平行四边形.要证□是菱形,只要证.由已知条件________,,可证,故只要证,即证,易证________,________,故只要证,易证,,________,故得,即可得证.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠A=36°AB的中垂线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BCD的周长等于AB+BC;(4)D是AC中点其中正确的命题序号是_________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.
如:,,,因此,,这三个数都是神秘数.
(1)是神秘数吗?为什么?
(2)设两个连续偶数为和(其中取非负整数),由这两个连续偶数构造的神秘数是的倍数吗?为什么?
(3)①若长方形相邻两边长为两个连续偶数,试说明其周长一定为神秘数.
②在①的条件下,面积是否为神秘数?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校后勤人员到文具店给八年级学生购买考试专用文具包,该文具店规定一次性购买400个以上,可享受八折优惠.若按八年级学生实际人数每人购买一个,不能享受八折优惠,需付款1936元;若再多买88个就可享受八折优惠,并且同样只需付款1936元求该校八年级学生的总人数和文具包的价格.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com