精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC中,∠BAC60°,∠B45°AB2,点DBC上的一个动点,点D关于ABAC的对称点分别是点EF,四边形AEGF是平行四边形,则四边形AEGF面积的最小值是

A. 1B. C. D.

【答案】D

【解析】

由对称的性质和菱形的定义证出四边形AEGF是菱形,得出∠EAF=2BAC=120°,当ADBC最小时,AD的值最小,即AE的值最小,即菱形AEGF面积最小,求出AD=,即可得出四边形AEGF的面积的最小值.

由对称的性质得:AE=AD=AF
∵四边形AEGF是平行四边形,
∴四边形AEGF是菱形,
∴∠EAF=2BAC=120°
ADBC最小时,AD的值最小,即AE的值最小,即菱形AEGF面积最小,
∵∠ABC=45°AB=2
AD=
∴四边形AEGF的面积的最小值=

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】 如图,梯形ABCD中,AB//CD,且AB=2CDEF分别是ABBC的中点.

EFBD相交于点M

1)求证:△EDM∽△FBM

2)若DB=9,求BM

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点DDH⊥AC于点H,连接DE交线段OA于点F.

(1)求证:DH是圆O的切线;

(2)若,求证:A为EH的中点.

(3)若EA=EF=1,求圆O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣6,点B表示8,点C表示16,我们称点A和点C在数轴上相距22个长度单位.动点P从点A出发,以1单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速:同时,动点Q从点C出发,以2单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.

1)动点P从点A运动至C点需要多少时间?

2PQ两点相遇时,求出相遇点M所对应的数是多少;

3)求当t为何值时,PO两点在数轴上相距的长度与QB两点在数轴上相距的长度相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直角三角形ABC中,∠C=90°,将△ABC绕点A逆时针旋转至△AED,使点C的对应点D恰好落在边AB上,E为点B的对应点.设∠BACα,则∠BED______.(用含α的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下图的数阵是由全体奇数排成:

(1)图中平行四边形框内的九个数之和与中间的数有什么关系?

(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;

(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠B=90°AB=16cmBC=12cmPQABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.

1)出发2秒后,求PQ的长.

2)当点Q在边BC上运动时,出发几秒钟后,PQB能形成等腰三角形?

3)当点Q在边CA上运动时,求能使BCQ成为等腰三角形的运动时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上点A所表示的数是,点B在点A的右侧,AB=6;点CAB之间, AC=2BC

1)在数轴上描出点B

2)求点C所表示的数,并在数轴上描出点C

3)已知在数轴上存在点P,使PA+PC=PB,求点P所表示的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,相距千米的两地间有一条笔直的马路,地位于两地之间且距千米,小明同学骑自行车从地出发沿马路以每小时千米的速度向地匀速运动,当到达地后立即以原来的速度返回,到达地停止运动,设运动时间为(),小明的位置为点.

(1)时,求点间的距离

(2)当小明距离千米时,直接写出所有满足条件的

(3)在整个运动过程中,求点与点的距离(用含的代数式表示)

查看答案和解析>>

同步练习册答案