【题目】用一条长40cm的绳子围成一个面积为64cm2的矩形.设矩形的一边长为xcm,则可列方程为 .
科目:初中数学 来源: 题型:
【题目】小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如果AF=4,AB=7.
(1)求BE的长;
(2)在图中作出延长BE与DF的交点G,并说明BG⊥DF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2厘米的速度运动,动点E也同时从点C开始在直线CM上以每秒1厘米的速度运动,连接AD、AE,设运动时间为t秒.
(1)求AB的长;
(2)当t为多少时,△ABD的面积为6cm2?
(3)当t为多少时,△ABD≌△ACE,并简要说明理由.(可在备用图中画出具体图形)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为( )
A.﹣10 B.4 C.﹣4 D.10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在形如ab=N的式子中,我们已经研究两种情况:①已知a和b,求N,这是乘方运算,②已知b和N,求a,这是开放运算,现在我们研究第三种情况:已知a和N,求b,我们把这种运算叫做对数运算.
定义:如果ab=N,(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作:b=logaN,例如求log28,因为23=8,所以
log8=3,又比如∵2﹣3=,∴log2=﹣3
(1)根据定义计算:
①log381= ②log10=1③如果logx16=4,那么x=
(2)设ax=M,ay=N,则logaM=x,logaN=y(a>0,a≠1,M、N均为正数),
∵ax.ay=ax+y=M.N
∴logaMN=x+y,即logaMN=logaM+logaN
这是对数运算的重要性质之一,进一步,我们还可以得出:
logaM1M2M3…Mn= (其中M1、M2、M3…、Mn均为正数a>0,a≠1)
(3)请你猜想:loga= (a>0,a≠1,M、N均为正数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.
(1)第一批该款式T恤衫每件进价是多少元?
(2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=AC,点D为BC中点,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com