精英家教网 > 初中数学 > 题目详情

【题目】某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.
(1)求这款空调每台的进价(利润率= = ).
(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?

【答案】
(1)解:设这款空调每台的进价为x元,根据题意得:

=9%,

解得:x=1200,

经检验:x=1200是原方程的解.

答:这款空调每台的进价为1200元


(2)解:商场销售这款空调机100台的盈利为:100×1200×9%=10800元
【解析】(1)利用利润率= = 这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.
【考点精析】掌握分式方程的应用是解答本题的根本,需要知道列分式方程解应用题的步骤:审题、设未知数、找相等关系列方程、解方程并验根、写出答案(要有单位).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系xoy中,一次函数y= x+3的图象与x轴和y轴交于A、B两点,将△AOB绕点O顺时针旋转90°后得到△A′OB′.

(1)求直线A′B′的解析式;
(2)若直线A′B′与直线AB相交于点C,求SABC:SABO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=2
以上结论中,你认为正确的有 . (填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是DCP的平分线上一点.若AMN=90°,求证:AM=MN.

下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.

证明:在边AB上截取AE=MC,连ME.正方形ABCD中,B=BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=MAB=MAE.

(下面请你完成余下的证明过程)

(2)若将(1)中的正方形ABCD改为正三角形ABC(如图2),N是ACP的平分线上一点,则当AMN=60°时,结论AM=MN是否还成立?请说明理由.

(3)若将(1)中的正方形ABCD改为边形ABCD……X,请你作出猜想:当AMN= °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度元收费,如果超过140度,超过部分按每度元收费.

若某住户六月份的用电量是130度,该用户六月份应缴多少电费?

若该住户七月份的用电量是200度,该用户七月份应缴多少电费?

若某住户十月份的用电量是a度,该用户十月份应缴多少电费?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有名;
(2)把条形统计图补充完整;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的对角线ACBD相交于点OOBODBDCD,∠BAC=∠BDC=90°.

(1)填空:∠ABD=∠   

(2)求的值;

(3)点D关于直线BC的对称点为N,连接AN,请补全图形,探究线段ANAD有怎样的关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校体育组对本校九年级全体同学体育测试情况进行调查,他们随即抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图:

请根据以上不完整的统计图提供的信息,解答下列问题:

(1) 该课题研究小组共抽查了_________名同学的体育测试成绩,扇形统计图中B级所占的百分比b=__________

(2) 补全条形统计图.

(3) 若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)均有___________名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的做法是这样的:如图.

1)在的内部任取一个点E,过点EEMOB

2)在边上取一点N,作NFOA于点N,且NF=EM

3)过点E作直线l1OB,过点F作直线l2OAl1 l2交于点

4)画射线

则射线的平分线.

根据小明的画法回答下面的问题:

1)小明作l1OBl2OA的目的是___________________________________________

2l1 l2交于点,则射线的平分线的依据是__________________________

查看答案和解析>>

同步练习册答案