分析 将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.
解答 解:∵a2c2-b2c2=a4-b4,
∴c2(a2-b2)=(a2+b2)(a2-b2),
移项得:c2(a2-b2)-(a2+b2)(a2-b2)=0,
因式分解得:(a2-b2)[c2-(a2+b2)]=0,
则当a2-b2=0时,a=b;当a2-b2≠0时,a2+b2=c2;
所以△ABC是直角三角形或等腰三角形或等腰直角三角形.
故答案是:直角三角形或等腰三角形或等腰直角三角形.
点评 此题考查因式分解和勾股定理逆定理的实际运用,掌握平方差公式和完全平方公式是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2.5 | B. | $\sqrt{5}$ | C. | ±2.5 | D. | ±$\sqrt{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com