分析 首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=x的直线的解析式,然后求得与y=x的交点坐标,再求得交点与D之间的距离即可.
解答 解:理解过圆心C的直线与一次函数y=x垂直的交点即为这个圆的半径的最小值.
AB的中点D的坐标是:(4,-2).
∵C(a,a)在一次函数y=x上,
∴设过D且与直线y=x垂直的直线的解析式是y=-x+b,
把(4,-2)代入解析式得:-4+b=-2,
解得:b=2,
则函数解析式是y=-x+2.
根据题意得:$\left\{\begin{array}{l}{y=-x+2}\\{y=x}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
则交点的坐标是(1,1).
则这个圆的半径的最小值是:$\sqrt{{(4-1)}^{2}{+(-2-1)}^{2}}$=3$\sqrt{2}$.
故答案是:3$\sqrt{2}$.
点评 此题考查一次函数的综合运用,两点之间的距离公式,以及两直线垂直的条件,正确理解C(a,a),一定在直线y=x上是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | OM的长 | B. | OM的长的2倍 | C. | CD的长 | D. | CD的长的2倍 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| x(元) | 60 | 65 | 70 | 75 | … |
| y (件) | 40 | 35 | 30 | 25 | … |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com