【题目】阅读理解
抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.
问题解决
如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点.
(1)写出点C的坐标,并说明∠ECF=90°
(2)在△PEF中,M为EF中点,P为动点.
①求证:PE2+PF2=2(PM2+EM2);
②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.
【答案】
(1)
解:当x=0时,y=k0+1=1,
则点C的坐标为(0,1).
根据题意可得:AC=AE,
∴∠AEC=∠ACE.
∵AE⊥EF,CO⊥EF,
∴AE∥CO,
∴∠AEC=∠OCE,
∴∠ACE=∠OCE.
同理可得:∠OCF=∠BCF.
∵∠ACE+∠OCE+∠OCF+∠BCF=180°,
∴2∠OCE+2∠OCF=180°,
∴∠OCE+∠OCF=90°,即∠ECF=90°
(2)
①过点P作PH⊥EF于H,
Ⅰ.若点H在线段EF上,如图2①.
∵M为EF中点,
∴EM=FM=EF.
根据勾股定理可得:
PE2+PF2﹣2PM2=PH2+EH2+PH2+HF2﹣2PM2
=2PH2+EH2+HF2﹣2(PH2+MH2)
=EH2﹣MH2+HF2﹣MH2
=(EH+MH)(EH﹣MH)+(HF+MH)(HF﹣MH)
=EM(EH+MH)+MF(HF﹣MH)
=EM(EH+MH)+EM(HF﹣MH)
=EM(EH+MH+HF﹣MH)
=EMEF=2EM2,
∴PE2+PF2=2(PM2+EM2);
Ⅱ.若点H在线段EF的延长线(或反向延长线)上,如图2②.
同理可得:PE2+PF2=2(PM2+EM2).
综上所述:当点H在直线EF上时,都有PE2+PF2=2(PM2+EM2);
②连接CD、PM,如图3.
∵∠ECF=90°,
∴CEDF是矩形,
∵M是EF的中点,
∴M是CD的中点,且MC=EM.
由①中的结论可得:
在△PEF中,有PE2+PF2=2(PM2+EM2),
在△PCD中,有PC2+PD2=2(PM2+CM2).
∵MC=EM,
∴PC2+PD2=PE2+PF2.
∵PE=PF=3,
∴PC2+PD2=18.
∵1<PD<2,
∴1<PD2<4,
∴1<18﹣PC2<4,
∴14<PC2<17.
∵PC>0,
∴<PC<.
【解析】(1)如图1,只需令x=0,即可得到点C的坐标.根据题意可得AC=AE,从而有∠AEC=∠ACE.易证AE∥CO,从而有∠AEC=∠OCE,即可得到∠ACE=∠OCE,同理可得∠OCF=∠BCF,然后利用平角的定义即可证到∠ECF=90°;
(2))①过点P作PH⊥EF于H,分点H在线段EF上(如图2①)和点H在线段EF的延长线(或反向延长线)上(如图2②)两种情况讨论,然后只需运用勾股定理及平方差公式即可证到PE2+PF2﹣2PM2=2EM2 , 即PE2+PF2=2(PM2+EM2);
②连接CD,PM,如图3.易证CEDF是矩形,从而得到M是CD的中点,且MC=EM,然后根据①中的结论,可得:在△PEF中,有PE2+PF2=2(PM2+EM2),在△PCD中,有PC2+PD2=2(PM2+CM2).由MC=EM可得PC2+PD2=PE2+PF2 . 根据PE=PF=3可求得PC2+PD2=18.根据1<PD<2可得1<PD2<4,即1<18﹣PC2<4,从而可求出PC的取值范围.
【考点精析】认真审题,首先需要了解二次函数的性质(增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小),还要掌握勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】如图,在水平地面上竖立着一面墙AB,墙外有一盏路灯D.光线DC恰好通过墙的最高点B,且与地面形成37°角.墙在灯光下的影子为线段AC,并测得AC=5.5米.
(1)求墙AB的高度(结果精确到0.1米);(参考数据:tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)
(2)如果要缩短影子AC的长度,同时不能改变墙的高度和位置,请你写出两种不同的方法
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】理解:数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:
思路一 如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tanD=tan15°===2﹣.
思路二 利用科普书上的和(差)角正切公式:tan(α±β)=.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===2﹣.
思路三 在顶角为30°的等腰三角形中,作腰上的高也可以…
思路四 …
请解决下列问题(上述思路仅供参考).
(1)类比:求出tan75°的值;
(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;
(3)拓展:如图3,直线y=x﹣1与双曲线y=交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为弘扬“东亚文化”,某单位开展了“东亚文化之都”演讲比赛,在安排1位女选手和3位男选手的出场顺序时,采用随机抽签方式.
(1)请直接写出第一位出场是女选手的概率;
(2)请用画树状图或列表的方法表示第一、二位出场选手的所有等可能结果,并求出他们都是男选手的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=3 ﹣3,CD∥AB,并与弧AB相交于点M、N.
(1)求线段OD的长;
(2)若sin∠C= ,求弦MN的长;
(3)在(2)的条件下,求优弧MEN的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:长宽比为:1(n为正整数)的矩形称为矩形.
下面,我们通过折叠的方式折出一个矩形,如图①所示.
操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.
操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.
则四边形BCEF为矩形.
证明:设正方形ABCD的边长为1,则BD==.
由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.
∴∠A=∠BFE.
∴EF∥AD.
∴=,即=.
∴BF=.
∴BC:BF=1:=:1.
∴四边形BCEF为矩形.
阅读以上内容,回答下列问题:
(1)在图①中,所有与CH相等的线段是 ,tan∠HBC的值是 ;
(2)已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN是矩形;
(3)将图②中的矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”,则n的值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com