精英家教网 > 初中数学 > 题目详情

【题目】阅读理解
抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.
问题解决
如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点.

(1)写出点C的坐标,并说明∠ECF=90°
(2)在△PEF中,M为EF中点,P为动点.
①求证:PE2+PF2=2(PM2+EM2);
②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.

【答案】
(1)

解:当x=0时,y=k0+1=1,

则点C的坐标为(0,1).

根据题意可得:AC=AE,

∴∠AEC=∠ACE.

∵AE⊥EF,CO⊥EF,

∴AE∥CO,

∴∠AEC=∠OCE,

∴∠ACE=∠OCE.

同理可得:∠OCF=∠BCF.

∵∠ACE+∠OCE+∠OCF+∠BCF=180°,

∴2∠OCE+2∠OCF=180°,

∴∠OCE+∠OCF=90°,即∠ECF=90°


(2)

①过点P作PH⊥EF于H,

Ⅰ.若点H在线段EF上,如图2①.

∵M为EF中点,

∴EM=FM=EF.

根据勾股定理可得:

PE2+PF2﹣2PM2=PH2+EH2+PH2+HF2﹣2PM2

=2PH2+EH2+HF2﹣2(PH2+MH2

=EH2﹣MH2+HF2﹣MH2

=(EH+MH)(EH﹣MH)+(HF+MH)(HF﹣MH)

=EM(EH+MH)+MF(HF﹣MH)

=EM(EH+MH)+EM(HF﹣MH)

=EM(EH+MH+HF﹣MH)

=EMEF=2EM2

∴PE2+PF2=2(PM2+EM2);

Ⅱ.若点H在线段EF的延长线(或反向延长线)上,如图2②.

同理可得:PE2+PF2=2(PM2+EM2).

综上所述:当点H在直线EF上时,都有PE2+PF2=2(PM2+EM2);

②连接CD、PM,如图3.

∵∠ECF=90°,

CEDF是矩形,

∵M是EF的中点,

∴M是CD的中点,且MC=EM.

由①中的结论可得:

在△PEF中,有PE2+PF2=2(PM2+EM2),

在△PCD中,有PC2+PD2=2(PM2+CM2).

∵MC=EM,

∴PC2+PD2=PE2+PF2

∵PE=PF=3,

∴PC2+PD2=18.

∵1<PD<2,

∴1<PD2<4,

∴1<18﹣PC2<4,

∴14<PC2<17.

∵PC>0,

<PC<


【解析】(1)如图1,只需令x=0,即可得到点C的坐标.根据题意可得AC=AE,从而有∠AEC=∠ACE.易证AE∥CO,从而有∠AEC=∠OCE,即可得到∠ACE=∠OCE,同理可得∠OCF=∠BCF,然后利用平角的定义即可证到∠ECF=90°;
(2))①过点P作PH⊥EF于H,分点H在线段EF上(如图2①)和点H在线段EF的延长线(或反向延长线)上(如图2②)两种情况讨论,然后只需运用勾股定理及平方差公式即可证到PE2+PF2﹣2PM2=2EM2 , 即PE2+PF2=2(PM2+EM2);
②连接CD,PM,如图3.易证CEDF是矩形,从而得到M是CD的中点,且MC=EM,然后根据①中的结论,可得:在△PEF中,有PE2+PF2=2(PM2+EM2),在△PCD中,有PC2+PD2=2(PM2+CM2).由MC=EM可得PC2+PD2=PE2+PF2 . 根据PE=PF=3可求得PC2+PD2=18.根据1<PD<2可得1<PD2<4,即1<18﹣PC2<4,从而可求出PC的取值范围.
【考点精析】认真审题,首先需要了解二次函数的性质(增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小),还要掌握勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在水平地面上竖立着一面墙AB,墙外有一盏路灯D.光线DC恰好通过墙的最高点B,且与地面形成37°角.墙在灯光下的影子为线段AC,并测得AC=5.5米.

(1)求墙AB的高度(结果精确到0.1米);(参考数据:tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)
(2)如果要缩短影子AC的长度,同时不能改变墙的高度和位置,请你写出两种不同的方法

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】理解:数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:
思路一 如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tanD=tan15°===2﹣
思路二 利用科普书上的和(差)角正切公式:tan(α±β)=.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===2﹣
思路三 在顶角为30°的等腰三角形中,作腰上的高也可以…
思路四 …
请解决下列问题(上述思路仅供参考).

(1)类比:求出tan75°的值;
(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;

(3)拓展:如图3,直线y=x﹣1与双曲线y=交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为弘扬“东亚文化”,某单位开展了“东亚文化之都”演讲比赛,在安排1位女选手和3位男选手的出场顺序时,采用随机抽签方式.
(1)请直接写出第一位出场是女选手的概率;
(2)请用画树状图或列表的方法表示第一、二位出场选手的所有等可能结果,并求出他们都是男选手的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知实数a,b满足a﹣b=1,a2﹣ab+2>0,当1≤x≤2时,函数y=(a≠0)的最大值与最小值之差是1,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组 , 并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=3 ﹣3,CD∥AB,并与弧AB相交于点M、N.
(1)求线段OD的长;
(2)若sin∠C= ,求弦MN的长;
(3)在(2)的条件下,求优弧MEN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:长宽比为:1(n为正整数)的矩形称为矩形.
下面,我们通过折叠的方式折出一个矩形,如图①所示.
操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.
操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.
则四边形BCEF为矩形.
证明:设正方形ABCD的边长为1,则BD==
由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.
∴∠A=∠BFE.
∴EF∥AD.
=,即=
∴BF=
∴BC:BF=1:=:1.
∴四边形BCEF为矩形.
阅读以上内容,回答下列问题:
(1)在图①中,所有与CH相等的线段是 ,tan∠HBC的值是 ;

(2)已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN是矩形;
(3)将图②中的矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”,则n的值是 .

查看答案和解析>>

同步练习册答案