精英家教网 > 初中数学 > 题目详情
两条直线被第三条直线所截,∠1是∠2的同旁内角,∠2是∠3的内错角.
(1)画出示意图.
(2)若∠1=2∠2,∠2=2∠3,求∠1,∠2的度数.
考点:同位角、内错角、同旁内角
专题:
分析:(1)根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行分析即可,进而画出图形即可;
(2)利用邻补角的关系进而求出∠1,∠2的度数.
解答:解:(1)如图所示:


(2)∵∠1=2∠2,∠2=2∠3,
∴设∠3=x,则∠2=2x,∠1=4x,
故x+4x=180°,
解得:x=36°,
故∠1=4×36°=144°,∠2=72°.
点评:此题主要考查了三线八角以及邻补角的性质,得出∠1与∠3的关系是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,A、B、D在一条直线上,△ABC与△BDE都是等边三角形,F、G、P、Q分别是AC、AD、DE、CE的中点,试判定四边形FGPQ是怎样的特殊四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,AB=10cm,BC=8cm,AC=6cm.动点P从点A开始在线段AB上沿A→B→A的路径以每秒2.5cm的速度运动,同时动点Q从点B开始在线段BC上以每秒1cm的速度向点C运动,设点P,Q运动的时间为t秒(0<t<8).
(1)求证:∠C=90°;
(2)求当BQ的长为何值时,以P,Q,B为顶点的三角形与△ABC相似.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,BI、CI分别是∠ABC和∠BCA的平分线,设∠BIC的度数为y°,∠A为x°,则y与x之间的函数关系式为(  )
A、y=2x
B、y=90+x
C、y=90+
1
2
x
D、y=180-x

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠1,∠2,∠3,∠4,∠5,∠6中有
 
对同位角,有
 
对内错角,有
 
对同旁内角.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线AB,CD被EF所截,如果∠1与∠2互补,且∠1=120°,那么∠3,∠4的度数各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC的边CA、BA的延长线上分别取点D、E,连接DE,作∠E、∠C的平分线,交于点F.求证:∠F=
1
2
(∠B+∠D).

查看答案和解析>>

科目:初中数学 来源: 题型:

设函数y=
1
x
与y=x-2的图象的交点坐标为(a,b),则
1
a
+
1
b
的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,直线CT切⊙O于点C,若∠AOB=80°,则∠BCA=
 
度.

查看答案和解析>>

同步练习册答案