精英家教网 > 初中数学 > 题目详情
16.已知二次函数y=ax2+bx+c(a≠0)图象如图,有下列8个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数);⑥2a+b=0;⑦b2-4ac≤0;⑧(a+c)2>b2
其中正确的结论有③④⑤⑥⑧.

分析 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.

解答 解:①由抛物线的开口方向向下可推出a<0,
因为对称轴在y轴右侧,对称轴为x=-$\frac{b}{2a}$>0,
而a<0,所以b>0,
由抛物线与y轴的交点在y轴的正半轴上,可知c>0,故abc<0,错误;
②当x=-1时,y<0,∴a-b+c<0,a+c<b,错误;
③当x=2时,y>0,∴4a+2b+c>0,正确;
④对称轴为x=-$\frac{b}{2a}$=1,∴a=-$\frac{b}{2}$,∵a-b+c<0,∴-$\frac{b}{2}$-b+c<0,∴2c<3b,正确;
⑤∵当x=1时有最大值y=a+b+c,∴a+b+c>am2+bm+c,∴a+b>m(am+b)(m≠1的实数),正确;
⑥对称轴为x=-$\frac{b}{2a}$=1,∴b=-2a,∴2a+b=0,正确;
⑦抛物线与x轴有两个交点,∴b2-4ac>0,错误;
⑧∵x=1时,y=a+b+c>0,x=-1时,y=a-b+c<0,
∴(a+b+c)(a-b+c)<0,
即[(a+c)+b][(a+c)-b]=(a+c)2-b2<0,
∴(a+c)2<b2,正确.
综上可得:③④⑤⑥⑧正确.
故答案为③④⑤⑥⑧.

点评 本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,抛物线y=-$\frac{1}{4}$x2+x+3与x轴相交于点A、B,与y轴相交于点C,顶点为点D,对称轴l与直线BC相交于点E,与x轴相交于点F.
(1)求直线BC的解析式;
(2)设点P为该抛物线上的一个动点,以点P为圆心,r为半径作⊙P.
①当点P运动到点D时,若⊙P与直线BC相交,求r的取值范围;
②若r=$\frac{{4\sqrt{5}}}{5}$,是否存在点P使⊙P与直线BC相切?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.(1)计算:|-4|+($\sqrt{2}$+1)0-$\sqrt{12}$
(2)先化简,再选择一个你喜欢的整数代入求值:$(\frac{1}{x-1}-\frac{1}{x+1})÷\frac{x}{{2{x^2}-2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列语句:
①相等的角是对顶角;
②如果两条直线被第三条直线所截,那么同位角相等;
③过直线外一点有且只有一条直线与已知直线平行;
④平行线间的距离处处相等.
其中正确的命题是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,0<x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:

(1)在这次调查中,一共抽取了50名学生;
(2)扇形统计图中,a=24%,C级对应的圆心角为72度;
(3)请你利用你所学的统计知识,估计本次抽取所有学生的综合评定成绩的平均分.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,在正方形ABCD中,对角线AC、BD交于O,E点在BC上,EG⊥OB,EF⊥OC,垂足分别为点G、F,AC=10,则EG+EF=5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.一个两位数,个位上的数是a,十位上的数字比个位上的数小3,这个两位数是11a-30(用含a、b的代数式表示),当a=5时,这个两位数为25.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.不等式组$\left\{\begin{array}{l}{x<4\frac{2}{3}}\\{x<-2}\end{array}\right.$的解集是x<-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知:如图,AM、CM平分∠BAD和∠BCD,若∠B=34°,∠D=42°,求∠M.

查看答案和解析>>

同步练习册答案