【题目】如图1,OA=2,OB=4,以A点为顶点,AB为腰,在第三象限作等腰Rt△ABC.
(1)求C点的坐标及△ABC的面积;
(2)如图2,P为y轴负半轴上一个动点,当P点在y轴负半轴上向下运动时,若以P为直角顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求证:OP=DE+2.
(3)已知点F坐标为(-2,-2),当G在y轴的负半轴上沿负方向运动时,请在图3作出等腰Rt△FGH,且始终保持∠GFH=90°,若FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0), 当G在y轴的负半轴上沿负方向运动时,以下结论:①m-n为定值;②m+n为定值,请判断其中哪些结论是正确的,并求出其值.
【答案】(1)①C(-6,-2);②10;(2)证明见解析;(3)②,m+n=-4.
【解析】
(1)如图1,过C作CM⊥x轴于M点,则可以求出△MAC≌△OBA,可得CM=OA=1,MA=OB=2,故点C的坐标为(-3,-1);再由勾股定理求出AB、AC的长即可求出△ABC的面积;
(2)如图2,过D作DQ⊥OP于Q点,则DE=OQ,利用三角形全等的判定定理可得△AOP≌△PQD(AAS),进一步可得PQ=OA=2,即OP-DE=2,从而得到结论;
(1)①如图1,过C作CM⊥x轴于M点,
∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,
则∠MAC=∠OBA,
在△MAC和△OBA中
,
∴△MAC≌△OBA(AAS),
∴CM=OA=2,MA=OB=4,
∴OM=OA+AM=2+4=6,
∴点C的坐标为(-6,-2).
②在Rt△AOB中,AB=AC=,
∴S△ACB=ACAB=10.
(2)证明:如图2,过D作DQ⊥OP于Q点,则DE=OQ
∴OP-DE=OP-OQ=PQ,
∵∠APO+∠QPD=90°,
∠APO+∠OAP=90°,
∴∠QPD=∠OAP,
在△AOP和△PQD中,
,
∴△AOP≌△PQD(AAS).
∴PQ=OA=2.
即OP = DE+2.
(3)结论②是正确的,m+n=-4,
如图3,过点F分别作FS⊥x轴于S点,FT⊥y轴于T点,则FS=FT=2,∠FHS=∠HFT=∠FGT,
在△FSH和△FTG中,
则△FSH≌△FTG(AAS)
则GT=HS,
又∵G(0,m),H(n,0),点F坐标为(-2,-2),
∴OT═OS=2,OG=|m|=-m,OH=n,
∴GT=OG-OT=-m-2,HS=OH+OS=n+2,
则-2-m=n+2,
则m+n=-4.
科目:初中数学 来源: 题型:
【题目】某公司有2位股东,25名工人,从2006年至2008年,公司每年股东的总利润和每年工人的工资总额如图所示.
(1)填写下表
年份 | 2006年 | 2007年 | 2008年 |
工人的平均工资/元 |
|
|
|
股东的平均工资/元 |
|
|
|
(2)假设在以后的若干年中,每年工人的工资和股东的利润都按图中的速度增长,那么到哪一年,股东的平均利润是工人的平均工资的10倍?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在边AB、CB上,CD=DE,∠CDB=∠DEC,过点C作CF⊥DE于点F,交AB于点G,
(1)求证:△ACD≌△BDE;
(2)求证:△CDG为等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)
(1)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.
请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是 三角形;∠ADB的度数为 .
(2)在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;
(3)在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校数学兴趣小组进行户外兴趣活动:测量河中桥墩露出水面部分AB的高度.如图所示,在点C处测得∠BCA=45°.在坡比为i=1:3,高度DE=15米的小山坡顶E处测得桥墩顶部B的仰角为20°,则桥墩露出水面部分AB的高度约为(精确到1米,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)( )
A. 34 B. 48 C. 49 D. 64
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车同时出发,设普通列车行驶的时间为(小时),两车之间的距离为(千米),图中的折线表示与之间的函数关系。
根据图象回答下列问题:
(1)甲地与乙地相距______千米,两车出发后______小时相遇;
(2)普通列车到达终点共需_______小时,普通列车的速度是______千米/小时;
(3)动车的速度是________千米/小时;
(4)的值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)通过计算补全条形统计图;
(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从A地到B地的公路需要经过C地,根据规划,将在A,B两地之间修建一条笔直的公路.已知AC=10千米,∠CAB=34°,∠CBA=45°,求改直后公路AB的长(结果精确到0.1千米)
(参考数据:sin34°≈0.559,cos34°≈0.829,tan34°≈0.675)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=x2﹣(3m+1)x+2m2+m(m>0),与y轴交于点C,与x轴交于点A(x1,0),B(x2,0),且x1<x2.
(1)求2x1﹣x2+3的值;
(2)当m=2x1﹣x2+3时,将此抛物线沿对称轴向上平移n个单位,使平移后得到的抛物线顶点落在△ABC的内部(不包括△ABC的边),求n的取值范围(直接写出答案即可).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com