【题目】一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图像如下图
所示:
(1)根据图像,直接写出y1、y2关于x的函数关系式;
(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;
(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.
【答案】(1)(0≤x≤10);(0≤x≤6)(2)(3)A加油站到甲地距离为150km或300km
【解析】
(1)直接运用待定系数法就可以求出y1、y2关于x的函数图关系式;
(2)分别根据当0≤x<时,当≤x<6时,当6≤x≤10时,求出即可;
(3)分A加油站在甲地与B加油站之间,B加油站在甲地与A加油站之间两种情况列出方程求解即可.
(1)设y1=k1x,由图可知,函数图象经过点(10,600),
∴10k1=600,
解得:k1=60,
∴y1=60x(0≤x≤10),
设y2=k2x+b,由图可知,函数图象经过点(0,600),(6,0),则
,
解得:
∴y2=-100x+600(0≤x≤6);
(2)由题意,得
60x=-100x+600
x=,
当0≤x<时,S=y2-y1=-160x+600;
当≤x<6时,S=y1-y2=160x-600;
当6≤x≤10时,S=60x;
即;
(3)由题意,得
①当A加油站在甲地与B加油站之间时,(-100x+600)-60x=200,
解得x=,
此时,A加油站距离甲地:60×=150km,
②当B加油站在甲地与A加油站之间时,60x-(-100x+600)=200,
解得x=5,此时,A加油站距离甲地:60×5=300km,
综上所述,A加油站到甲地距离为150km或300km.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=(x﹣3)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)抛物线上是否存在一点P,使S△ABP=S△ABC?若存在,请求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.
(1)参加这次夏令营活动的初中生共有多少人?
(2)活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款.结果小学生每人
捐款 5 元,初中生每人捐款 10 元,高中生每人捐款 15 元,大学生每人捐款 20 元.问平均 每人捐款是多少元?
(3)在(2)的条件下,把每个学生的捐款数额(以元为单位)——记录下来,则在这组数据中,众数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.
(1)如图①,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为 .
(2)不改变①中灯泡的高度,将两个边长为30cm的正方形框架按图②摆放,请计算此时横向影子A′B,D′C的长度和为多少?
(3)有n个边长为a的正方形按图③摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰△ABC,点D、E、F分别在BC、AB、AC上,且∠BAC=∠ADE=∠ADF=60°.
(1)在图中找出与∠DAC相等的角,并加以证明;
(2)若AB=6,BE=m,求:AF(用含m的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:RT△ABC与RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.现将RT△ABC和RT△DEF按图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,并按如下方式运动.
运动一:如图2,△ABC从图1的位置出发,以1cm/s的速度沿EF方向向右匀速运动,DE与AC相交于点Q,当点Q与点D重合时暂停运动;
运动二:在运动一的基础上,如图3,RT△ABC绕着点C顺时针旋转,CA与DF交于点Q,CB与DE交于点P,此时点Q在DF上匀速运动,速度为cm/s,当QC⊥DF时暂停旋转;
运动三:在运动二的基础上,如图4,RT△ABC以1cm/s的速度沿EF向终点F匀速运动,直到点C与点F重合时为止.
设运动时间为t(s),中间的暂停不计时,
解答下列问题
(1)在RT△ABC从运动一到最后运动三结束时,整个过程共耗时 s;
(2)在整个运动过程中,设RT△ABC与RT△DEF的重叠部分的面积为S(cm2),求S与t之间的函数关系式,并直接写出自变量t的取值范围;
(3)在整个运动过程中,是否存在某一时刻,点Q正好在线段AB的中垂线上,若存在,求出此时t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在距树米的地面上平放一面镜子,人退后到距镜子米的处,在镜子里恰巧看见树顶,若人眼距地面米.
求树高;
和是位似图形吗?若是,请指出位似中心;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BD,CE是△ABC的两条高,直线BD,CE相交于点H.
(1)若∠BAC=100°,求∠DHE的度数;
(2)若△ABC中∠BAC=50°,直接写出∠DHE的度数是____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com