精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,长方形MNPO的边OMx轴上,边OPy轴上,点N的坐标为(3,9),将矩形沿对角线PM翻折,N点落在F点的位置,且FMy轴于点E,那么点F的坐标为_____

【答案】(﹣

【解析】

FHOPH,FGx轴于G.首先证明PFE≌△MOE,推出OE=FE,OM=PF=3,设OE=x,那么PE=9x,DE=x,在RtPFE中,PE2=FE2+PF2,构建方程求出x即可解决问题.

如图,作FHOPH,FGx轴于G,

∵点N的坐标为(3,9),

MO=3,MN=9,

根据折叠可知:PF=OM,

而∠PFE=MOE=90°,FEP=MEO,

∴△PFE≌△MOE,

OE=FE,OM=PF=3,

OE=x,那么PE=9x,DE=x,

∴在RtPFE中,PE2=FE2+PF2

(9x)2=x2+32

x=4,

EF=4,PE=5,

FH=

HE=

FG=HO=4+

F(),

故答案为().

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,AB=2,动点DB开始沿BC向点C运动,到达点C后停止运动,将△ABD绕点A旋转后得到△ACE,则下列说法中,正确的是(  )

①DE的最小值为1;②ADCE的面积是不变的;在整个运动过程中,点E运动的路程为2;④在整个运动过程中,△ADE的周长先变小后变大.

A. ①③④ B. ①②③ C. ②③④ D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣ x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为 m.

(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠ABC=72°.

(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE,则∠AFB=_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数 的图象经过第二象限内的点A(﹣1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数 的图象上另一点C(n,一2).

(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把沿对折,叠合后的图形如图所示.若,则∠2的度数为(

A. 24° B. 35° C. 30° D. 25°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系内,直线与两坐标轴交于两点,点为坐标原点,若在该坐标平面内有以点(不与点重合)为顶点的直角三角形与全等,且这个以点为顶点的直角三角形与有一条公共边,则所有符合条件的点个数为(

A. 9 B. 7 C. 5 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.

(1)观察猜想:如图(1),当点D在线段BC上时,

①BC与CF的位置关系是:   

②BC、CD、CF之间的数量关系为:   (将结论直接写在横线上)

(2)数学思考:如图(2),当点D在线段CB的延长线上时,上述①、②中的结论是否仍然成立?若成立,请给予证明,若不成立,请你写出正确结论再给予证明.

查看答案和解析>>

同步练习册答案