【题目】如图,将△ABC沿BC翻折得到△DBC,再将△DBC绕C点逆时针旋转60°得到△FEC,延长BD交EF于H,已知∠ABC=30°,∠BAC=90°,AC=1,则四边形CDHF的面积为_____.
【答案】
【解析】
利用解直角三角形得到BC=2AC=2,AB=,再利用翻折、旋转的性质知AC=CD=CF=1,∠ACB=∠BCD=∠FCE=60°,CE=CB=2,EF=BD=AB=,∠E=∠ABC=30°,则DE=1,接着计算出DH=DE=,然后利用S四边形CDHF=S△CEF﹣S△DEH进行计算.
解:∵∠ABC=30°,∠BAC=90°,AC=1,
∴BC=2AC=2,
∴AB==,
由翻折、旋转的性质知AC=CD=CF=1,∠ACB=∠BCD=∠FCE=60°,
∴∠ACF=180°,即点A、C、F三点共线,CE=CB=2,EF=BD=AB=,∠E=∠ABC=30°,
∴DE=2﹣1=1,
在Rt△DEH中,DH=DE=,
S四边形CDHF=S△CEF﹣S△DEH=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.
(1)求抛物线及直线AC的函数关系式;
(2)若P是抛物线上位于直线AC上方的一个动点,设点P的横坐标为t;
①当S△ACP=S△ACN时,求点P的坐标;
②是否存在点P,使得△ACP是以AC为斜边的直角三角形?若存在,求点P的坐标;若不存在,请说明理由;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,请直接写出点E的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=a(x+2)2-3与y2=(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是( )
A.①②B.②③C.③④D.①④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,的顶点均在格点上,点A的坐标为,点B的坐标为,点C的坐标为.
(1)以点C为旋转中心,将旋转后得到,请画出;
(2)平移,使点A的对应点的坐标为,请画出;
(3)若将绕点P旋转可得到,则点P的坐标为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.
(1)试判断BD与⊙O的位置关系,并说明理由;
(2)当AB=BE=1时,求⊙O的面积;
(3)在(2)的条件下,求HG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我校为了开阔学生的视野,积极组织学生参加校外拓展活动,现随机抽取我校的部分学生,调查他们最喜欢去的地方(A:方特,B:世界之窗,C:韶山,D:其他)进行数据统计,并绘制了两幅不完整的统计图(a),(b),请问:
(1)我校共调查了 名学生;
(2)将两幅统计图中不完整的部分补充完整;
(3)若我校共有学生6000人,请估计我校最喜欢去韶山的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,点F在BC边上,过A,B,F三点的⊙O交AC于另一点D,作直径AE,连结EF并延长交AC于点G,连结BE,BD,四边形BDGE是平行四边形.
(1)求证:AB=BF.
(2)当F为BC的中点,且AC=3时,求⊙O的直径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】韬韬想在春节期间去外地过年,爸爸对韬韬说:你从背面朝上且相同,正面分别写有1、2、3的三张卡片中随机摸出一张卡片不放回,然后再随机摸出另一张卡片,若两次摸出的数字之和等于4,则满足你的愿望.
(1)采用画树状图法或列表法列出两次摸出卡片的所有可能结果;
(2)韬韬实现愿望的概率有多大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com