【题目】如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为( )
A.(,) B.(3,3) C. (,) D.(,)
【答案】D
【解析】
试题分析:过P作MN⊥y轴,交y轴于M,交AB于N,过D作DH⊥y轴,交y轴于H, ∠CMP=∠DNP=∠CPD=90°,
∴∠MCP+∠CPM=90°,∠MPC+∠DPN=90°,
∴∠MCP=∠DPN,
∵P(1,1),
∴OM=BN=1,PM=1,
∴△MCP≌△NPD,
∴DN=PM,PN=CM,
∵BD=2AD,
∴设AD=x,BD=2x,
∵P(1,1),
∴DN=2x﹣1,
则2x﹣1=1,
解得:x=1,即BD=2,C的坐标是(0,3),
∵直线y=x,
∴AB=OB=3,
在Rt△DNP中,由勾股定理得:PC=PD= 在Rt△MCP中,由勾股定理得:CM=2
则C的坐标是(0,3),设直线CD的解析式是y=kx+3,
把D(3,2)代入得:k=﹣
即直线CD的解析式是y=﹣x+3, 即方程组为:
解得:,即Q的坐标是(,)
科目:初中数学 来源: 题型:
【题目】在△ABC中,F是BC上一点,FG⊥AB,垂足为G.
(1)过C点画CD⊥AB,垂足为D;
(2)过D点画DE∥BC,交AC于E;
(3)求证:∠EDC=∠GFB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在Rt△ABC中,∠ACB=90°,AC=BC,BM⊥CM于M,且CM>BM
(1)如图1,过点A作AF⊥CM于F,直线写出线段BM、AF、MF的数量关系是
(2)如图2,D为BM延长线上一点,连AD以AD为斜边向右侧作等腰Rt△ADE,再过点E作EN⊥BM于N,求证:CM+EN=MN;
(3)将(2)中的△ADE绕点A顺时针旋转任意角α后,连BD取BD中点P,连CP、EP,作出图形,试判断CP、EP的数量和位置关系并证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com