精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积是

【答案】

【解析】

试题分析:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,BC=AB=AD=∵正方形ABCD,正方形A1B1C1C,∴∠OAD+∠A1AB=90°,∠ADO+∠OAD=90°,∴∠A1AB=∠ADO∠AOD=∠A1BA=90°,∴△AOD∽△A1BA,∴,∴,∴A1B=,∴A1B1=A1C=A1B+BC=,同理可得,A2B2==,同理可得,A3B3=,同理可得,A2016B2016=,∴S正方形C2015C2016B2016A2016= =,故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】综合题。
(1)证明:“三角形内角和是180°”;
(2)请写出“直角三角形斜边上的中线等于斜边的一半”的逆命题,判断这一逆命题是真命题还是假命题,如果是真命题给出证明,如果是假命题,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°,连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°,按此规律下去,则第n个菱形的边长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知2a=3,2b=6,2c=12,试判断a,b,c之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DE上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.

(1)求sinEAC的值.

(2)求线段AH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.

(1)已知BD=,求正方形ABCD的边长;

(2)猜想线段EM与CN的数量关系并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OA⊥OC,OB⊥OD,下面结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC﹣∠COD=∠BOC中,正确的有(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.

(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

查看答案和解析>>

同步练习册答案