精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0).下列结论:①ab<0;②b2>4a;③0<a+b+c<2;④0<b<1;⑤当x>-1时,y>0.其中正确结论的个数是( )

A.5个
B.4个
C.3个
D.2个

【答案】B
【解析】由抛物线的对称轴x=- 在y轴右侧,可以判定a、b异号,由此确定①正确; 由抛物线与x轴有两个交点得到b2-4ac>0,又抛物线过点(0,1),得出c=1,由此判定②正确; 由a-b+c=0,及b>0得出a+b+c=2b>0;由b<1,c=1,a<0,得出a+b+c<a+1+1<2,由此判定③正确; 由抛物线过点(-1,0),得出a-b+c=0,即a=b-1,由a<0得出b<1;由a<0,及ab<0,得出b>0,由此判定④正确; 由图象可知,当自变量x的取值范围在一元二次方程ax2+bx+c=0的两个根之间时,函数值y>0,由此判定⑤错误.
故答案为:B.
由抛物线的对称轴在y轴右侧,可以判定a、b异号,可对①作出判断;
由抛物线与x轴有两个交点得到b2=4ac>0,抛物线过点(0,1),得出c=1,可对②作出判断;
由a-b+c=0,及b>0得出a+b+c=2b>0;由b<1,c=1,a<0,得出a+b+c<a+1+1<2,可对③作出判断;
由抛物线过点(-1,0),得出a-b+c=0,即a=b-1,由a<0得出b<1;由a<0,及ab<0,得出b>0,可对④作出判断;
由图象可知,当自变量x的取值范围在一元二次方程ax2+bx+c=0的两个根之间时,函数值y>0,可对⑤作出判断.得出结论即可。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是( )

A. 3分时汽车的速度是40千米/

B. 12分时汽车的速度是0千米/

C. 从第3分到第6分,汽车行驶了120千米

D. 从第9分到第12分,汽车的速度从60千米/时减少到0千米/

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是( )

A.18cm2
B.12cm2
C.9cm2
D.3cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰△ABC中,AB=AC,折叠△ABC,使点A与点B重合,折痕为DE,若∠DBC=15°,则∠A的度数是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展以倡导绿色出行,关爱师生健康为主题的教育活动.为了了解本校师生的出行方式,在本校范围内随机抽查了部分师生,已知随机抽查的教师人数为学生人数的一半,将收集的数据绘制成下列不完整的两种统计图.

1)本次共调查了多少名学生?

2)求学生步行所在扇形的圆心角度数.

3)求教师乘私家车出行的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC于点D,点E为BC的中点,连接DE.

(1)求证:DE是半圆⊙O的切线;
(2)若∠BAC=30°,DE=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形ABCD的顶点AB的坐标分别为(﹣60),(40),点Dy轴上.

1)求点C的坐标;

2)求对角线AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,GCD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG2,则AE的长度为( )

A. 6B. 8

C. 10D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知∠1+2=180°,∠3=B

求证:∠AED=ACB

证明:∠1+2=180°(已知),∠1+4=180° ),

∴∠2= ),

ABEF ),

∴∠3= ),

∵∠3=B(已知),

∴∠B= (等量代换),

DEBC ),

∴∠AED=ACB ).

查看答案和解析>>

同步练习册答案