【题目】如图,已知A(-4,n),B(2,-4)是一次函数的图像和反比例函数的图像的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求不等式的解集_________(请直接写出答案).
(3)求△AOB的面积;
【答案】(1);y=-x-2;(2) 或;(3)6.
【解析】
(1)由点A(-4,n),B(2,-4)在反比例函数的图象上,可得m=-8,n=2,从而可得反比例函数的解析式和点A的坐标,再将点A、B的坐标代入一次函数的解析式列出方程组解得k、b的值,即可得到一次函数的解析式;
(2)根据图象和点A、B的坐标写出一次函数值小于反比例函数值所对应的x的取值范围即可;
(3)由(1)中所得一次函数解析式求得直线AB与x轴的交点C的坐标,这样由S△AOB=S△AOC+S△BOC即可求得其面积了.
(1)∵A(-4,n),B(2,-4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点,
∴m=2×(-4)=-8,-4n=2×(-4),
∴反比例函数的解析式为:,n=2,
∴点A的坐标为(-4,2),
将A、B的坐标代入y=kx+b得: ,
解得: ,
∴一次函数的解析式为:y=-x-2;
(2)不等式的解集为:-4<x<0或x;
(3)∵在直线y=-x-2中,当y=0时,x=-2,
∴直线AB与x轴交于点C(-2,0),
∴S△AOB=S△AOC+S△BOC=.
科目:初中数学 来源: 题型:
【题目】某中学团委会为了解该校学生的课余活动情况,采取抽样的办法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制了如下的两幅不完整的统计图(如图),请你根据图中提供的信息解答下列问题:
(1)这次抽样中,一共调查了多少名学生?
(2)“其它”在扇形图中所占的圆心角是多少度?
(3)若该校有2500名学生,你估计全校可能有多少名学生爱好阅读?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.
(1)求这个梯子顶端A距地面有多高;
(2)如果梯子的顶端A下滑4 m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4 m吗?为什么?
(3)亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O的距离始终是不变的定值,会思考问题的你能说出这个点并说明其中的道理吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+1过A(1,0)、B,(5,0)两点.
(1)求:抛物线的函数表达式;
(2)求:抛物线与y轴的交点C的坐标及其对称轴
(3)若抛物线对称轴上有一点P,使△COA∽△APB,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上点A、点B对应的数分别为、6.
、B两点的距离是______;
当时,求出数轴上点C表示的有理数;
一元一次方解应用题:点D以每秒4个单位长度的速度从点B出发沿数轴向左运动,点E以每秒3个单位长度的速度从点A出发沿数轴向右运动,点F从原点出发沿数轴运动,点D、点E、点F同时出发,t秒后点D、点E相距1个单位长度,此时点D、点F重合,求出点F的速度及方向.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(-2,2),B(0,5),C(0,2).
(1)画△,使它与△ABC关于点C成中心对称;
(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),画出平移后对应的;
(3)若将绕某一点旋转可得到,则旋转中心的坐标为 _____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com