精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形中,,点分别在边上,且,连接,将对折,点落在直线上的点处,得折痕;将对折,点落在直线上的点处,得折痕,当分别在边上时.若令的面积为的长度为,则关于的函数解析式是(

A.

B.

C.

D.

【答案】A

【解析】

对折可知△NA’E≌△NAE,可得A’E=AE=x;对折可知△MB’E≌△MBE,可得∠MB’E=90°,B’E=EB=4-x,∠MEB’=∠MEB=60°,MB’=.再利用即可求解.

:∵对折

∴△NA’E≌△NAE,

∴A’E=AE=x,

对折

∴△MB’E≌△MBE,

∴∠MB’E=90°,B’E=EB=4-x,∠MEB’=∠MEB=60°,

∴A’B’=x-4+x=2x-4,,MB’=

故选择A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.

(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.

类别

频数(人数)

频率

武术类

0.25

书画类

20

0.20

棋牌类

15

b

器乐类

合计

a

1.00

(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.

请你根据以上图表提供的信息解答下列问题:

①a=_____,b=_____

②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____

③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(1,0),B(2,﹣3),C(4,﹣2).

(1)画出ABC关于x轴的对称图形A1B1C1

(2)画出A1B1C1向左平移3个单位长度后得到的A2B2C2

(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一张一个角为30°,最小边长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:

1)爷爷比小强先上了多少米?山顶离山脚多少米?

2)谁先爬上山顶?小强爬上山顶用了多少分钟?

3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某宾馆客房部有个房间供游客居住,当每个房间的定价为每天元时,所有房间刚好可以住满,根据经验发现,每个房间的定价每增加元,就会有个房间空闲,对有游客入住的房间,宾馆需对每个房间支出每天元的各种费用.设每个房间的定价增加元,每天的入住量为个,客房部每天的利润为元.

的函数关系式;

的函数关系式,并求客房部每天的最大利润是多少?

为何值时,客房部每天的利润不低于元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在四边形ABCD的边BC的延长线上取一点E,在直线BC的同侧作一个以CE为底的等腰CEF,且满足∠B+F180°,则称三角形CEF为四边形ABCD伴随三角形

1)如图1,若CEF是正方形ABCD伴随三角

①连接AC,则∠ACF   

②若CE2BC,连接AECFH,求证:HCF的中点;

2)如图2,若CEF是菱形ABCD伴随三角形,∠B60°M是线段AE的中点,连接DMFM,猜想并证明DMFM的位置与数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+4x轴于点AB,交y轴于点C,连结ACBCD是线段OB上一动点,以CD为一边向右侧作正方形CDEF,连结BF,交DE于点P.

(1)试判断△ABC的形状,并说明理由;

(2)求证:BFAB.

(3)当点D从点O沿x轴正方向移动到点B时,点E所走过的路线长为______

(4)探究当点D在何处时,△FBC是等腰三角形,并求出相应的BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做规形图

1)观察规形图,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;

2)请你直接利用以上结论,解决以下三个问题:

①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XYXZ恰好经过点BC,∠A=40°,则∠ABX+ACX等于多少度;

②如图3DC平分∠ADBEC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;

③如图4,∠ABD,∠ACD10等分线相交于点G1G2G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.

查看答案和解析>>

同步练习册答案