【题目】图 1、图 2 均是 6×6 的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为 1,点 A、B、C、D 均在格点上.在图 1、图 2 中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.
(1)在图 1 中以线段 AB 为边画一个△ABM,使∠ABM=45°,且△ABM 的面积为 6;
(2)在图 2 中以线段 CD 为边画一个四边形 CDEF,使∠CDE=∠CFE=90°,且四边形 CDEF 的面积为 8.
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,连接BD、CE.将△ADE绕点A旋转,BD、CE也随之运动.
(1)求证:BD=CE;
(2)在△ADE绕点A旋转过程中,当AE∥BC时,求∠DAC的度数;
(3)如图②,当点D恰好是△ABC的外心时,连接DC,判断四边形ADCE的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与直线分别相交于,两点,且此抛物线与轴的一个交点为,连接,.已知,.
(1)求抛物线的解析式;
(2)在抛物线对称轴上找一点,使的值最大,并求出这个最大值;
(3)点为轴右侧抛物线上一动点,连接,过点作交轴于点,问:是否存在点使得以,,为顶点的三角形与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系,点 O 是原点,直线 y x 6分别交 x 轴,y 轴于点 B,A,经过点 A 的直线 y x b 交 x 轴于点 C.
(1)求 b 的值 ;
(2)点 D 是线段 AB 上的一个动点,连接 OD,过点 O 作 OE⊥OD 交 AC 于点 E,连接DE,将△ODE 沿 DE 折叠得到△FDE,连接 AF.设点 D 的横坐标为 t,AF 的长为 d,当t> 3 时,求 d 与 t 之间的函数关系式(不要求写出自变量 t 的取值范围);
(3)在(2)的条件下,DE 交 OA 于点 G,且 tan∠AGD=3.点 H 在 x 轴上(点 H 在点O 的右侧),连接 DH,EH,FH,当∠DHF=∠EHF 时,请直接写出点 H 的坐标,不需要写出解题过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,以的边为直径作,点C在上,是的弦,,过点C作于点F,交于点G,过C作交的延长线于点E.
(1)求证:是的切线;
(2)求证:;
(3)若,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:x),并绘制了样本的频数分布表如下:
月均用水量 | 2≤x<3 | 3≤x<4 | 4≤x<5 | 5≤x<6 | 6≤x<7 | 7≤x<8 | 8≤x<9 |
频数 | 2 | 12 | ① | 10 | ② | 3 | 2 |
百分比 | 4% | 24% | 30% | 20% | ③ | 6% | 4% |
(1)请根据题中已有的信息补全频数分布表:① ;② ;③
(2)如果家庭月均用水量在5≤x<8范围内为中等用水量家庭,请你通过样本估计,总体中的中等用水量家庭大约有多少户?
(3)记月均用水量在2≤x<3范围内的两户为a1,a2,在8≤x<9范围内的2户为b1,b2,现从这4户家庭中任意抽取2户,请你通过列表或画树状图求出抽取的2户家庭来自不同范围的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,点A、B、M、N均落在格点上,在图①、图②给定的网格中按要求作图.
(1)在图①中的格线MN上确定一点P,使PA与PB的长度之和最小
(2)在图②中的格线MN上确定一点Q,使∠AQM=∠BQM.
要求:只用无刻度的直尺,保留作图痕迹,不要求写出作法.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com