【题目】如图1,长方形ABCD沿着直线DE和EF折叠,使得AB的对应点和点E在同一条直线上。
(1)求∠DEF的度数;
(2)如图2,若再次沿着直线EM和EN折叠使得A、B的对应点分别落在DE和EF上,∠AEM=34°,求∠BEN的度数。
【答案】(1)90°;(2)11°.
【解析】
(1)根据折叠的性质得到∠AED=∠A′ED,∠BEF=∠B′EF,再根据平角的定义得到∠AED+∠A′ED+∠BEF+∠B′EF=180°,即可得到∠FED的度数;
(2)由(1)得∠AED+∠BEF=180°-∠FED=180°-90°=90°,根据折叠的性质得到∠AEM=∠EM,∠BEN=∠EN,所以∠AEM+∠BEN=(∠AED+∠BEF)=×90°=45°,可得∠BEN=45°-∠AEM.
解:(1)因为长方形纸片的一角折叠,顶点A落在A′处,另一角折叠,顶点B落在EA′上的B′点处,
所以∠AED=∠A′ED,∠BEF=∠B′EF,而∠AED+∠A′ED+∠BEF+∠B′EF=180°
所以∠A′ED+∠B′EF=90°,即∠FED=90°.
(2)因为由(1)得∠AED+∠BEF=180°-∠FED=180°-90°=90°,根据折叠的性质得到∠AEM=∠EM,∠BEN=∠EN,所以∠AEM+∠BEN=(∠AED+∠BEF)=×90°=45°,因为∠AEM=34°,所以∠BEN=45°-∠AEM=45°-34°=11°.
科目:初中数学 来源: 题型:
【题目】如图,△ABC为等腰直角三角形,∠ABC=90°,AB=BC,点A在x轴的负半轴上,点B是y轴上的一个动点,点C在点B的上方,
(1)如图1当点A的坐标为(﹣3,0),点B的坐标为(0,1)时,求点C的坐标;
(2)设点A的坐标为(a,0),点B的坐标为(0,b).过点C作CD⊥y轴于点D,在点B运动过程中(不包含△ABC的一边与坐标轴重合的情况),猜想线段OD的长与a、b的数量关系,并说明理由;
(3)在(2)的条件下如图4,当x轴平分∠BAC时,BC交x轴于点E,过点作CF⊥x轴于点F.说明此时线段CF与AE的数量关系(用含a、b的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】快递公司准备购买机器人来代替人工分拣已知购买- 台甲型机器人比购买-台乙型机器人多万元;购买台甲型机器人和台乙型机器人共需万元.
(1)求甲、乙两种型号的机器人每台的价格各是多少万元;
(2)已知甲型、乙型机器人每台每小时分拣快递分别是件、件,该公司计划最多用万元购买台这两种型号的机器人.该公司该如何购买,才能使得每小时的分拣量最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD、AE分别是△ABC的高和角平分线,∠B=30°,∠C=50°。
(1)求∠DAE的度数;
(2)试写出∠DAE与∠C、∠B之间的数量关系(不必说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线AB与CD相交于点0,OE⊥AB,OF⊥CD,OM是∠BOF的角平分线
(1)若∠AOC=25°,求∠BOD和∠COE的度数.
(2)若∠AOC=a,求∠EOM的度数(用含a的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图和统计表.
(1)在图①中,“7分”所在扇形的圆心角等于 °;
(2)请你将图②所示的统计图补充完整;
(3)经计算,乙校的成绩的平均数是8.3分,中位数是8分,请写出甲校的成绩的平均数、中位数,并从平均数和中位数的角度分析哪个学校的成绩较好;
(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下列段文字,再解答问题:
已知在平面内有两点其两点间的距离公式为:
(1)已知点P(2,4)、Q(-3,-8),试求P、Q两点间的距离;
(2)已知点A(0,6)、B(-3,2)、C(3,2),判断线段AB、BC、AC中哪两条线段是相等的?并说明理由;
(3)已知点且MN=10,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在方格纸内将△ABC水平向右平移4个单位得到△A′B′C′.
(1)补全△A′B′C′,利用网格点和直尺画图;
(2)图中AC与A1C1的关系是:______;
(3)画出△ABC中AB边上的中线CE;
(4)平移过程中,线段AC扫过的面积是_________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=30,∠AOB 内有一定点 P,且 OP=12,在 OA 上有一动点 Q,OB 上有 一动点 R。若△PQR 周长最小,则最小周长是( )
A. 6 B. 12 C. 16 D. 20
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com