【题目】利用我们学过的知识,可以导出下面这个形式优美的等式:
a2+b2+c2-ab-bc-ac= [(a-b)2+(b-c)2+(c-a)2],
该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.
(1)请你检验这个等式的正确性;
(2)若a=2 016,b=2 017,c=2 018,你能很快求出a2+b2+c2-ab-bc-ac的值吗?
科目:初中数学 来源: 题型:
【题目】如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合,连接CE.
(1)△ABC旋转了多少度?
(2)连接CE,试判断△AEC的形状.
(3)若∠ACE=20°,求∠AEC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)-23+ (2018+3)0-
; (2)992-69×71;
(3) ÷(-3xy); (4)(-2+x)(-2-x);
(5)(a+b-c)(a-b+c); (6)(3x-2y+1)2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点是线段
所在平面内任意一点,分别以
、
为边,在
同侧作等边
和等边
,联结
、
交于点
.
(1)如图1,当点在线段
上移动时,线段
与
的数量关系是:________;
(2)如图2,当点在直线
外,且
,仍分别以
、
为边,在
同侧作等边
和等边
,联结
、
交于点
.(1)的结论是否还存在?若成立,请证明;若不成立,请说明理由.此时
是否随
的大小发生变化?若变化,写出变化规律,若不变,请求出
的度数;
(3)如图3,在(2)的条件下,联结,求证:
平分
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点D、F、E、G都在△ABC的边上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.(请在下面的空格处填写理由或数学式)
解:∵EF∥AD,(已知)
∴∠2= ( )
∵∠1=∠2,(已知)
∴∠1= ( )
∴ ∥ ,( )
∴∠AGD+ =180°,(两直线平行,同旁内角互补)
∵ ,(已知)
∴∠AGD= (等式性质)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.
(1)数轴上点B表示的数为 ;
(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.
①当S=4时,画出图形,并求出数轴上点A′表示的数;
②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的直角坐标系中,解答下列问题:
(1)分别写出A、B两点的坐标;
(2)将△ABC向左平移3个单位长度,再向上平移5个单位长度,画出平移后的△A1B1C1;
(3)求 △A1B1C1的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是__(写出全等的简写).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如下表是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元.请问表中二档电价、三档电价各是多少?
阶梯 | 电量 | 电价 |
一档 | 0~180度 | 0.6元/度 |
二档 | 181~400度 | 二档电价 |
三档 | 401度及以上 | 三档电价 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com