小明家、公交车站、学校在一条笔直的公路旁(小明家到这条公路的距离忽略不计)。一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车
,公交车沿这条路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示。已知小明从家出发7分钟时与家的距离为1200米,从上车到他到达学校共用10分钟。下列说法:
①小明从家出发5分钟时乘上公交车
②公交车的速度为400米/分钟
③小明下公交车后跑向学校的速度为
100米/分钟
④小明上课同有迟到。
其中正确的个数是( )
(A)1个 (B)2个 (C)3个 (D)4个
科目:初中数学 来源: 题型:
小明在课外学习时遇到这样一个问题:
定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.
求函数y=﹣x2+3x﹣2的“旋转函数”.
小明是这样思考的:由函数y=﹣x2+3x﹣2可知,a1=﹣1,b1=3,c1=﹣2,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.
请参考小明的方法解决下面问题:
(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;
(2)若函数y=﹣x2+
mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2015的值;
(3)已知函数y=﹣
(x+1)(x﹣4)的图象与x轴交于点A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分布是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=﹣
(x+1)(x﹣4)互为“旋转函数.”
查看答案和解析>>
科目:初中数学 来源: 题型:
图1,图2是两两张形状、大小完
全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.
(1) 在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=900;
(2) 在图2中以格点为顶点画出一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com