精英家教网 > 初中数学 > 题目详情
17.如图,直线y=-x+3与x轴,y轴分别相交于点B、点C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,点A在点B的左边,顶点为P,且线段AB的长为2.
(1)求点A的坐标;
(2)求该抛物线的函数表达式;
(3)在抛物线的对称轴上是否存在点G,使|GC-GB|最大?若存在,求G点坐标;若不存在说明理由.
(3)连结AC,请问在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

分析 (1)求值直线y=-x+3与x轴的交点B,然后根据AB的长,即可求得OA的长,则A的坐标即可求得;
(2)利用待定系数法求得二次函数的解析式;
(3)由于A、B两点关于抛物线的对称轴即直线x=2对称,所以G点为直线CA与直线x=2的交点,先运用待定系数法求出直线AC的解析式,再令x=2,求出y的值,进而得出G点坐标;
(4)分成$\frac{BQ}{BC}$=$\frac{PB}{AB}$,∠PBQ=∠ABC=45°和$\frac{QB}{AB}$=$\frac{PB}{BC}$,∠QBP=∠ABC=45°两种情况求得QB的长,据此即可求解.

解答 解:(1)当y=0时,-x+3=0,解得x=3,即B(3,0),
由AB=2,得3-2=1,
A的坐标为(1,0);
(2)根据题意得:$\left\{\begin{array}{l}{a+b+c=0}\\{9a+3b+c=0}\\{c=3}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=1}\\{b=-4}\\{c=3}\end{array}\right.$,
则抛物线的解析式是:y=x2-4x+3;
(3)延长CA,交对称轴于点G,连接GB,则|GC-GB|=GC-GA=AC最大.
∵抛物线y=x2-4x+3与x轴交于点A、点B(3,0),且对称轴为直线x=2,
∴点A的坐标为(1,0).
设直线AC的解析式为y=kx+m,
∵A(1,0),C(0,3),
∴$\left\{\begin{array}{l}{k+m=0}\\{m=3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-3}\\{m=3}\end{array}\right.$,
∴y=-3x+3,
当x=2时,y=-3×2+3=-3,
∴G点坐标为(2,-3);
(4)①当$\frac{BQ}{BC}$=$\frac{PB}{AB}$,∠PBQ=∠ABC=45°时,△PBQ∽△ABC.
即$\frac{BQ}{3\sqrt{2}}$=$\frac{\sqrt{2}}{2}$
∴BQ=3,
又∵BO=3,
∴点Q与点O重合,
∴Q1的坐标是(0,0).
②当$\frac{QB}{AB}$=$\frac{PB}{BC}$,∠QBP=∠ABC=45°时,△QBP∽△ABC.
即$\frac{QB}{2}$=$\frac{\sqrt{2}}{3\sqrt{2}}$,
QB=$\frac{2}{3}$.
∵OB=3,
∴OQ=OB-QB=3-$\frac{2}{3}$=$\frac{7}{3}$
∴Q2的坐标是($\frac{7}{3}$,0).
∵∠PBx=180°-45°=135°,∠BAC<135°,
∴∠PBx≠∠BAC.
∴点Q不可能在B点右侧的x轴上
综上所述,在x轴上存在两点Q1(0,0),Q2($\frac{7}{3}$,0)

点评 本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数的解析式,相似三角形的判定与性质,正确进行分类求得QB的长是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.将除去零以外的自然数按以下规律排列(提示:观察第一列的奇数行的数的规律和第一行的偶数列的数的规律)判断2016所在的位置是第45行,第10列.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.当a=-9时,关于x的方程$\frac{2ax+3}{a-x}$=$\frac{3}{2}$的解是x=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.若关于x的分式方程$\frac{1}{x-3}=2+\frac{m}{3-x}$无解,则常数m的值为(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,以下推理正确的是(  )
A.若AB∥CD,则∠1=∠2B.若AD∥BC,则∠1=∠2
C.若∠B=∠D,则AB∥CDD.若∠CAB=∠ACD,则AD∥BC

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.若a<b,则下列各式中一定成立的是(  )
A.-a<-bB.2a>2bC.a-1<b-1D.ac2<bc2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.一元二次方程(x-4)2=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为12.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列二次根式中,是最简二次根式的是(  )
A.$\sqrt{\frac{1}{3}}$B.$\sqrt{{a}^{2}}$C.$\sqrt{12}$D.$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.当x=-2时,代数式-x+1的值是(  )
A.-1B.-3C.1D.3

查看答案和解析>>

同步练习册答案