精英家教网 > 初中数学 > 题目详情

【题目】如图,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:
①△ABE≌△ACF;②BC=DF;③SABC=SACF+SDCF;④若BD=2DC,则GF=2EG.其中正确的结论是 . (填写所有正确结论的序号)

【答案】①②③④
【解析】解:①正确.∵△ABC是等边三角形,

∴AB=AC=BC,∠BAC=∠ACB=60°,

∵DE=DC,

∴△DEC是等边三角形,

∴ED=EC=DC,∠DEC=∠AEF=60°,

∵EF=AE,

∴△AEF是等边三角形,

∴AF=AE,∠EAF=60°,

在△ABE和△ACF中,

∴△ABE≌△ACF,故①正确.

②正确.∵∠ABC=∠FDC,

∴AB∥DF,

∵∠EAF=∠ACB=60°,

∴AB∥AF,

∴四边形ABDF是平行四边形,

∴DF=AB=BC,故②正确.

③正确.∵△ABE≌△ACF,

∴BE=CF,SABE=SAFC

在△BCE和△FDC中,

∴△BCE≌△FDC,

∴SBCE=SFDC

∴SABC=SABE+SBCE=SACF+SDCF,故③正确.

④正确.∵△BCE≌△FDC,

∴∠DBE=∠EFG,∵∠BED=∠FEG,

∴△BDE∽△FGE,

=

=

∵BD=2DC,DC=DE,

=2,

∴FG=2EG.故④正确.

【考点精析】本题主要考查了等边三角形的性质和平行四边形的判定与性质的相关知识点,需要掌握等边三角形的三个角都相等并且每个角都是60°;若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列计算正确的是( )
A.2a3+a2=2a5
B.(﹣2ab)3=﹣2ab3
C.2a3÷a2=2a
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AFD=∠1AC∥DE

(1)试说明:DF∥BC

(2)若∠1=68°DF平分∠ADE,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax+b的图象与反比例函数的图象交于A(﹣2m),B

4,﹣2)两点,与x轴交于C点,过AAD⊥x轴于D

1)求这两个函数的解析式:

2)求△ADC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.

(1)求加固后坝底增加的宽度AF的长;
(2)求完成这项工程需要土石多少立方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/秒;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/秒,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t<5).

(1)当t为何值时,四边形PQCM是平行四边形?
(2)设四边形PQCM的面积为y(cm2),求y与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】筐白菜,以每筐千克为标准,超过或不足的分别用正、负来表示,记录如下:

与标准质量的差单位:千克

筐 数

(1)与标准质量比较,筐白菜总计超过或不足多少千克?

(2)若白菜每千克售价元,则出售这筐白菜可卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A,B是反比例函数y= (k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案