【题目】如图,在□ABCD中,AC=AD,⊙O是△ACD的外接圆,BC的延长线与AO的延长线交于E.
(1)求证:AB是⊙O的切线;
(2)若AB=8,AD=5,求OE的长.
【答案】(1)证明参见解析;(2).
【解析】试题分析:(1)由已知得出弧AC=弧AD,由垂径定理得出OA⊥CD,由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,因此OA⊥AB,即可得出结论;(2)连接OD,由垂径定理得出CF=DF=4,由平行线得出△ADF∽△ECF,得出对应边成比例,证出AD=CE,AF=EF,得出BC=CE,BE=10,由勾股定理求出AE,得出AF=EF=3,设OE=x,则OF=3﹣x,⊙O的半径为6﹣x,由勾股定理得出方程,解方程即可.
试题解析:(1)∵AC=AD,∴弧AC=弧AD,∴OA⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴OA⊥AB,∴AB是⊙O的切线;(2)连接OD,如图所示:∵OA⊥CD,∴CF=DF=4,∵AD∥BC,∴△ADF∽△ECF,∴=1,∴AD=CE,AF=EF,∴BC=CE,∴BE=2BC=2AD=10,∴AE==6,∴AF=EF=3,设OE=x,则OF=3﹣x,⊙O的半径为6﹣x,由勾股定理得:OF2+DF2=OD2,即(6﹣x)2=(3﹣x)2+42,解得:x=,即OE=.
科目:初中数学 来源: 题型:
【题目】在二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | ﹣2 | ﹣2 | 0 | 4 | … |
则关于x的方程ax2+bx+c=0(a≠0)的根为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】让我们做一个数字游戏:
第一步:取一个自然数n1=5,计算n12+1得a1;
第二步:算出a1的各位数字之和得n2,计算n22+1得a2;
第三步:算出a2的各位数字之和得n3,计算n32+1得a3;
…………以此类推.
则a2017=__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com