分析 (1)先证∠AED=∠CPD,再证明△ADE≌△CDP,根据全等三角形的对应边相等即可得出结论;
(2)先证明△BCE≌△DCE,得出对应角相等∠BEC=∠DEP,得出∠BEC=∠DPE,即可证出平行线.
解答 证明:(1)∵DE=DP,
∴∠DEP=∠DPE,
∴∠AED=∠CPD,
∵四边形ABCD是正方形,
∴AD=CD=BC,∠DAC=∠BCE=∠DCA=45°,
在△ADE和△CDP中,
$\left\{\begin{array}{l}{∠AED=∠CPD}\\{∠DAC=∠DCA}\\{AD=CD}\end{array}\right.$,
∴△ADE≌△CDP(AAS),
∴AE=CP;
(2)在△BCE和△DCE中,
$\left\{\begin{array}{l}{BC=DC}\\{∠BCE=∠DCE}\\{CE=CE}\end{array}\right.$,
∴△BCE≌△DCE (SAS),
∴∠BEC=∠DEP,
∴∠BEC=∠DPE,
∴BE∥DF.
点评 本题考查了正方形的性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com