18£®Èçͼ£¬¾ØÐÎOABCµÄÁ½±ßOA¡¢OC·Ö±ðÔÚx¡¢yÖáµÄÕý°ëÖáÉÏ£¬µãBµÄ×ø±êΪ£¨3£¬2£©£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨k¡Ù0£¬x£¾0£©µÄͼÏó¾­¹ýµãB£®
£¨1£©Çó·´±ÈÀýµÄ½âÎöʽ£»
£¨2£©DÊDZßBCÉÏÒ»µã£¬¹ýµãD×÷DE¡ÍBC½»·´±ÈÀýµÄͼÏóÓÚµãE£¬ÒÔBD¡¢DEΪÏàÁÚÁ½±ß×÷¾ØÐÎDEFB£®ÈôBD£¼DE£¬ÇÒ¾ØÐÎOABCÓë¾ØÐÎDEFBÏàËÆ£®
¢ÙÁ¬½áBE¡¢BO£¬Ôò¡Ï0BE=90¡ã£»
¢ÚÇó¾ØÐÎDEFBµÄÃæ»ý£®

·ÖÎö £¨1£©°ÑµãB£¨3£¬2£©´úÈë·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¬Çó³ökµÄÖµ¼´¿É£»
£¨2£©¢ÙÓɾØÐÎOABCÓë¾ØÐÎDEFBÏàËÆ£¬µÃ³ö¡÷DBE¡×¡÷COB£¬µÃ³ö¶ÔÓ¦½ÇÏàµÈ¡ÏDBE=¡ÏCOB£¬µÃ³ö¡ÏDBE+¡ÏCBO=90¡ã¼´¿É£»
¢ÚÓɾØÐÎOABCÓë¾ØÐÎDEFBÏàËÆ£¬µÃ³öDE£ºDB=OA£ºAB=3£º2£¬ÉèDB=2k£¬ÔòDE=3k£¬µÃ³öµãEµÄ×ø±ê£¬´úÈë·´±ÈÀýº¯Êý½âÎöʽ£¬½â·½³ÌÇó³ökµÄÖµ£¬µÃ³öBD¡¢DEµÄ³¤£¬¼´¿ÉÇó³ö¾ØÐÎDEFBµÄÃæ»ý£®

½â´ð ½â£º£¨1£©°ÑµãB£¨3£¬2£©´úÈë·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÃ£ºk=6£¬
¡à·´±ÈÀýº¯ÊýµÄ½âÎöʽΪ£ºy=$\frac{6}{x}$£»
£¨2£©¢Ù¡ßËıßÐÎOABCÊǾØÐΣ¬
¡à¡ÏOCB=90¡ã£¬
¡à¡ÏCOB+¡ÏCBO=90¡ã£¬
¡ß¾ØÐÎOABCÓë¾ØÐÎDEFBÏàËÆ£¬BD£¼DE£¬
¡à¡÷DBE¡×¡÷COB£¬
¡à¡ÏDBE=¡ÏCOB£¬
¡à¡ÏDBE+¡ÏCBO=90¡ã£¬
¼´¡ÏOBE=90¡ã£»
¢Ú¡ß¾ØÐÎOABCÓë¾ØÐÎDEFBÏàËÆ£¬
¡àDE£ºDB=OA£ºAB=3£º2£¬
ÉèDB=2k£¬ÔòDE=3k£¬CD=3-2k£¬AF=AB+DE=2+3k£¬
¡àµãEµÄ×ø±êΪ£º£¨3-2k£¬2+3k£©£¬
°ÑµãE£¨3-2k£¬2+3k£©´úÈëy=$\frac{6}{x}$µÃ£º
£¨3-2k£©£¨2+3k£©=6£¬
½âµÃ£ºk=$\frac{5}{6}$£¬
¡àBD=2k=$\frac{5}{3}$£¬DE=3k=$\frac{5}{2}$£¬
¡à¾ØÐÎDEFBµÄÃæ»ý=BD•DE=$\frac{5}{3}$¡Á$\frac{5}{2}$=$\frac{25}{6}$£®

µãÆÀ ±¾ÌâÊÇ·´±ÈÀýº¯Êý×ÛºÏÌâÄ¿£¬¿¼²éÁË·´±ÈÀýº¯Êý½âÎöʽµÄÇ󷨡¢×ø±êÓëͼÐÎÌØÕ÷¡¢ÏàËÆ¶à±ßÐΡ¢ÏàËÆÈý½ÇÐεÄÐÔÖÊ¡¢¾ØÐÎÃæ»ýµÄ¼ÆËãµÈ֪ʶ£»±¾Ìâ×ÛºÏÐÔÇ¿£¬ÓÐÒ»¶¨ÄѶȣ¬ÊìÁ·ÕÆÎÕ¾ØÐεÄÐÔÖÊ£¬È·¶¨·´±ÈÀýº¯Êý½âÎöʽÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èçͼ£¬A£¬BΪ·´±ÈÀýº¯ÊýλÓÚµÚÒ»ÏóÏÞÄÚͼÏóÉϵĵ㣬¹ýµãA×÷xÖáµÄ´¹ÏßÓë¹ýµãB×÷yÖá´¹Ïß½»ÓÚµãP£¬Èç¹û¡÷ABPΪµÈÑüÖ±½ÇÈý½ÇÐÎÇÒAµã×ø±êΪ£¨5£¬1£©£¬Ôò¡÷ABPµÄÃæ»ýΪ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®½â²»µÈʽ×é$\left\{\begin{array}{l}{x-1£¼3}\\{x+2£¼4x-1}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ1£¬¾ØÐÎABCDÖУ¬AB=2$\sqrt{3}$£¬BC=6£¬µãP¡¢Q·Ö±ðÊÇÏß¶ÎADºÍÏß¶ÎBCÉϵ͝µã£¬Âú×ã¡ÏPQB=60¡ã£®
£¨1£©Ìî¿Õ£º¢Ù¡ÏACB=30¶È£»¢ÚPQ=4£®
£¨2£©ÉèÏß¶ÎBCµÄÖеãΪN£¬PQÓëÏß¶ÎACÏཻÓÚµãM£¬Èô¡÷CMNΪֱ½ÇÈý½ÇÐΣ¬ÇëÖ±½Óд³öÂú×ãÌõ¼þµÄAPµÄ³¤¶È£®
£¨3£©ÉèAP=x£¬¡÷PBQÓë¡÷ABCµÄÖØµþ²¿·ÖµÄÃæ»ýΪS£¬ÊÔÇóSÓëxµÄº¯Êý¹ØÏµÊ½ºÍ×Ô±äÁ¿xµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªx¡¢yÂú×ã$\left\{\begin{array}{l}{2x+y=3}\\{4x-2y=5}\end{array}\right.$£¬Ôò´úÊýʽ4x2-y2µÄֵΪ7.5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®²»µÈʽ×é$\left\{\begin{array}{l}{x+1£¼0}\\{-2x+1¡Ý0}\end{array}\right.$µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®-1£¼x¡Ü-$\frac{1}{2}$B£®x¡Ü$\frac{1}{2}$C£®x£¼-1D£®ÎÞ½â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼ÆË㣺£¨$\frac{1}{3}$£©0+$\sqrt{27}$-2sin60¡ã+|-3|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èçͼ£¬ÊýÖáÉϱíʾij²»µÈʽ×éµÄ½â¼¯£¬ÔòÕâ¸ö²»µÈʽ×é¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x¡Ü-2}\\{x£¾4}\end{array}\right.$B£®$\left\{\begin{array}{l}{x£¼-2}\\{x¡Ý4}\end{array}\right.$C£®$\left\{\begin{array}{l}{x£¾-2}\\{x¡Ü4}\end{array}\right.$D£®$\left\{\begin{array}{l}{x¡Ý-2}\\{x£¼4}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÔÚÕý·½ÐÎABCDÖУ¬µãEÔÚ¶Ô½ÇÏßACÉÏ£¬µãFÔÚ±ßBCÉÏ£¬Áª½áBE¡¢DF£¬DF½»¶Ô½ÇÏßÓÚµãP£¬ÇÒDE=DP£®
£¨1£©ÇóÖ¤£ºAE=CP£»
£¨2£©ÇóÖ¤£ºBE¡ÎDF£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸