精英家教网 > 初中数学 > 题目详情

【题目】下图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果

下面有三个推断:

①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47

②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5

③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45

其中合理的是

A. B. C. ①② D. ①③

【答案】B

【解析】①当抛掷次数是100时,计算机记录“正面向上”的次数是47,因试验次数比较少,所以只能说“正面向上”的频率是0.47,不能说概率是0.47,故不正确;

②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;

③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故不正确.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,二次函数C1(m>0)的图象与x轴交于AB两点(点A在点B的左侧),与y轴交于点C.

(1)求点A和点C的坐标;

(2)AB=4时,

①求二次函数C1的表达式;

②在抛物线的对称轴上是否存在点D,使DAC的周长最小,若存在,求出点D的坐标,若不存在,请说明理由;

(3)(2)中抛物线C1向上平移n个单位,得到抛物线C2,若当0x时,抛物线C2x轴只有一个公共点,结合函数图象,求出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学小组的同学为了解学生每周阅读的时间,随机调查了50名同学,绘制了如图所示的统计图,这组数据的中位数和众数分别是(  )

A. 中位数是25人,众数是20 B. 中位数和众数都是8小时

C. 中位数是13人,众数是20 D. 中位数是6小时,众数是8小时

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.

(1)求证:四边形BEDF是平行四边形;

(2)当四边形BEDF是菱形时,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)(探究)若,则代数式

(类比)若,则的值为

(2)(应用)当时,代数式的值是5,求当时, 的值;

(3)(推广)当时,代数式的值为,当时,的值为 (的式子表)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点是菱形边上的一动点,它从点出发沿在路径匀速运动到点,设的面积为点的运动时间为,则关于的函数图象大致为( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.

1)这次被调查的同学共有   人;

2)补全条形统计图,并在图上标明相应的数据;

3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC是等腰三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:

(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:

①线段PB= ,PC=

②猜想:PA2,PB2,PQ2三者之间的数量关系为

(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;

(3)若动点P满足,求的值.(提示:请利用备用图进行探求)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC

(1)求证:∠BAC=CBP

(2)求证:PB2=PCPA

(3)当AC=6,CP=3时,求sinPAB的值.

查看答案和解析>>

同步练习册答案