【题目】如图,两建筑物AB、CD的水平距离BC为60m,从A点测得D点的俯角α为30°,测得C点的俯角β为45°,求建筑物AB、CD的高度.(结果保留根号)
【答案】解:过点D作DE⊥AB于点E,则四边形BCDE是矩形,
由题意得,∠ACB=β=60°,∠ADE=α=30°,BC=60m,
∴DE=BC=60m,CD=BE,
在Rt△ABC中,AB=BCtan∠ACB=60×tan60°=60 (m),
在Rt△ADE中,AE=DEtan∠ADE=60×tan30°=20 (m),
∴CD=BE=AB﹣AE=60 ﹣20 (m).
答:建筑物AB、CD的高度分别为60 m、20 m.
【解析】过点D作DE⊥AB于点E,则四边形BCDE是矩形,由题意得,∠ACB=β=60°,∠ADE=α=30°,BC=60m,由矩形的性质得DE=BC=60m,CD=BE,解直角三角形得出AB,AE的长度,即可。
【考点精析】关于本题考查的关于仰角俯角问题,需要了解仰角:视线在水平线上方的角;俯角:视线在水平线下方的角才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD,AF分别为△ABC的中线和高,BE为△ABD的角平分线.
(1)若∠BED=40°,∠BAD=25°,求∠BAF的大小;
(2)若△ABC的面积为40,BD=5,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB=90°,AC=BC,小明量出AB=26cm,小聪很快就知道了砌墙砖块的厚度的平方(每块砖的厚度相等)为________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】填空完成推理过程:
如图,BCE,AFE是直线,AB∥CD,∠1=∠2,∠3=∠4,求证AD∥BE.
证明:∵AB∥CD(已知)
∴∠4=∠BAE( )
∵∠3=∠4(已知)
∴∠3=∠ (等量代换)
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF( )
即∠BAF=∠CAD
∴∠3=∠ (等量代换)
∴AD∥BE( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=70时,y=50;x=80时,y=40.
(1)求一次函数y=kx+b的表达式,并确定自变量x的取值范围.
(2)若该商场获得利润为w元,销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年8月高邮高铁将通车,高邮至北京的路程约为900km,甲、乙两人从高邮出发,分别乘坐汽车A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢150km/h,A车的行驶时间是B车的行驶时间的2.5倍,两车的行驶时间分别为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.
(2)如图1,求AF的长.
(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.
①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.
②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某医药研究所开发一种新药,在做药效试验时发现,如果成人按规定剂量服用,那么服药后,每毫升血液中含药量y(μg)随时间t(h)的变化图象如图所示,根据图象回答:
(1)服药后几时血液中含药量最高?每毫升血液中含多少微克?
(2)在服药几时内,每毫升血液中含药量逐渐升高?在服药几时后,每毫升血液中含药量逐渐下降?
(3)服药后14 h时,每毫升血液中含药量是多少微克?
(4)如果每毫升血液中含药量为4微克及以上时,治疗疾病有效,那么有效时间为几时?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com