【题目】已知二次函数y=x2-(2m-1)x+m2-m(m是常数)
(1)当m=2时,求二次函数图象与x轴的交点;
(2)若A(n-3,n2+2),B(-n+1,n2+2)是该二次函数图象上的两个不同点,求m的值和二次函数解析式.
【答案】(1)交点是(1,0)和(2,0);(2)m=,二次函数解析式为:y=x2+2x+.
【解析】
(1)将m=2代入函数解析式,然后令y=0,解一元二次方程即可得到图像与x轴的交点坐标;
(2)由A、B纵坐标相同,可知A、B关于对称轴对称,可求出对称轴,利用对称轴公式可求出m,从而得到二次函数解析式.
(1)当m=2时,y=x2-3x+2,
令y=0,得x2-3x+2=0,
解得:x1=1,x2=2,
∴交点是(1,0)和(2,0)
(2)∵A(n-3,n2+2)、B(-n+1,n2+2)是该二次函数图象上的两个不同点,
∴抛物线的对称轴是:,
∴ =,,
将代入y=x2-(2m-1)x+m2-m,得,
∴二次函数解析式为:y=x2+2x+.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形BCOG中,OC=3,点A为边OG上一点,OA=,AB,∠CBA=30°.动点D以每秒1个单位的速度从点C出发沿CO向终点O运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动,过点D作DF∥AB,交BC于点F,连接AD、DE、EF,设运动时间为1秒.
(1)求DF的长(用含t的代数式表示)
(2)求证:四边形ADFE为平行四边形;
(3)探索当t为何值时,△BEF与以D,E,F为顶点的三角形相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a≠0)过以下三个点:(m,n),(m+2,2n),和(m+6,n),当抛物线上另有点的横坐标为m+4时,它的纵坐标为_____;当横坐标为m﹣2时,它的纵坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A,B两点(点A在点B的左边),交y轴负半轴于点C.
(1)如图1,m=3
①直接写出A,B,C三点的坐标;
②若抛物线上有一点D,∠ACD=45°,求点D的坐标;
(2)如图2,过点E(m,2)作一直线交抛物线于点P,Q两点,连接AP,AQ,分别交y轴于M,N两点,求证:OMON是一个定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设双曲线y=(k>0)与直线y=x交于A\B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P、Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为( )
A.B.2C.D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,∠DAB=90°,点E在BC的延长线上,且∠CED=∠CAB.
(1)求证:DE是⊙O的切线.
(2)若AC∥DE,当AB=8,DC=4时,求AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com