【题目】如图,二次函数的图象交x轴于A、B两点,交y轴于点D,点B的坐标为,顶点C的坐标为.
求二次函数的解析式和直线BD的解析式;
点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;
在抛物线上是否存在异于B、D的点Q,使中BD边上的高为?若存在求出点Q的坐标;若不存在请说明理由.
【答案】(1),;(2)PM有最大值;;(3)存在满足条件的点Q,其坐标为或.
【解析】
(1)可设抛物线解析式为顶点式,由B点坐标可求得抛物线的解析式,则可求得D点坐标,利用待定系数法可求得直线BD解析式;
(2)设出P点坐标,从而可表示出PM的长度,利用二次函数的性质可求得其最大值;
(3)过Q作QG∥y轴,交BD于点G,过Q和QH⊥BD于H,可设出Q点坐标,表示出QG的长度,由条件可证得△DHG为等腰直角三角形,则可得到关于Q点坐标的方程,可求得Q点坐标.
(1)∵抛物线的顶点C的坐标为(1,4),
∴可设抛物线解析式为y=a(x-1)2+4,
∵点B(3,0)在该抛物线的图象上,
∴0=a(3-1)2+4,解得a=-1,
∴抛物线解析式为y=-(x-1)2+4,即y=-x2+2x+3,
∵点D在y轴上,令x=0可得y=3,
∴D点坐标为(0,3),
∴可设直线BD解析式为y=kx+3,
把B点坐标代入可得3k+3=0,解得k=-1,
∴直线BD解析式为y=-x+3;
(2)设P点横坐标为m(m>0),则P(m,-m+3),M(m,-m2+2m+3),
∴PM=-m2+2m+3-(-m+3)=-m2+3m=-(m-)2+,
∴当m=时,PM有最大值;
(3)如图,过Q作QG∥y轴交BD于点G,交x轴于点E,作QH⊥BD于H,
设Q(x,-x2+2x+3),则G(x,-x+3),
∴QG=|-x2+2x+3-(-x+3)|=|-x2+3x|,
∵△BOD是等腰直角三角形,
∴∠DBO=45°,
∴∠HGQ=∠BGE=45°,
当△BDQ中BD边上的高为2时,即QH=HG=2,
∴QG=×2=4,
∴|-x2+3x|=4,
当-x2+3x=4时,△=9-16<0,方程无实数根,
当-x2+3x=-4时,解得x=-1或x=4,
∴Q(-1,0)或(4,-5),
综上可知存在满足条件的点Q,其坐标为(-1,0)或(4,-5).
科目:初中数学 来源: 题型:
【题目】已知抛物线与直线有两个不同的交点.下列结论:①;②当时,有最小值;③方程有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则;其中正确的结论的个数是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:. 设这种产品每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(6,5),点E在边AB上,且AE=2,已知点P为y轴上一动点,连接EP,过点O作直线EP的垂线段OH,垂足为点H,在点P从点C运动到原点O的过程中,点H的运动路径长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形..反比例函数在第一象限内的图象经过点A,交BC的中点F.且 .
(1)求k值和点C的坐标;
(2)过点F作EF∥OB,交OA于点E(如图②),点P为直线EF上的一个动点,连接PA,PO.是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,已知抛物线(a<0)与x轴交于A、B两点(点A在点B左侧),与y轴负半轴交于点C,顶点为D,已知:S四边形ACBD=1:4.
(1)求点D的坐标(用仅含c的代数式表示);
(2)若tan∠ACB=,求抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是( )
A.30°B.35°C.40°D.45°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=-x+3与x轴,y轴分别交于B,C两点,抛物线y=-x2+bx+c经过B,C两点,点A是抛物线与x轴的另一个交点.
(1)求此抛物线的函数解析式;
(2)在抛物线上是否存在点P,使S△PAB=2S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子中装有三张卡片,三张卡片的正面分别标有数字,,,这些卡片除数字外都相同,将卡片搅匀.
(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是_________.
(2)先从盒子中任意抽取一张卡片,再从余下的两张卡片中任意抽取一张卡片,求抽取的两张卡片标有数字之和大于的概率(请用画树状图或列表等方法求解).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com