精英家教网 > 初中数学 > 题目详情
2.如图,M、P分别为△ABC的AB、AC上的点,且AM=BM,AP=2CP,BP与CM相交于N,已知PN=1,则PB的长为(  )
A.2B.3C.4D.5

分析 作MD∥BP交AC于D,根据题意得到MD是△ABP的中位线,NP是△CMD的中位线,根据三角形中位线定理计算即可.

解答 解:作MD∥BP交AC于D,
∵AM=BM,
∴AD=DP,MD=$\frac{1}{2}$BP,
∵AP=2CP,AD=DP,
∴DP=PC,又MD∥BP,
∴MD=2NP=2,
∴BP=4,
故选:C.

点评 本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.如图,在正△ABC中,AB=10cm,直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/s,运动时间为t(s)(0<t<5),则BP=$\frac{2\sqrt{3}}{3}t$.(用t的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,P为正方形ABCD的边AB上的一个动点(点P不与A、B重合),连结PC,作BE⊥PC,DF⊥PC,垂足分别为点E、F,已知AD=5.
(1)求BE2+DF2的值;
(2)过点P作PM∥DF交AD于点M,问:点P在何位置时线段AM最长,并求出此时AM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在平面直角坐标系中,四边形OABC是边长为8的正方形,M(8,m)、N(n,8)分别是线段AB、BC上的两个动点,且ON⊥MN,当OM最小时,m+n=10.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.y=$\sqrt{4-{x^2}}$的最大值m与最小值n的和m+n=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在△ABC中,DE∥BC,DF∥AB,D,E,M分别为AC,AB,BE的中点,连接DM,以DM为边作△DMN,连接FN,且DM=DN.若∠B=∠C=∠MDN=60°,AB=6,则FN的长度为$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)若(m-2)2+|n+3|=0,求3m-n2的值.
(2)a、b在数轴上的位置如图所示,化简:|a+b|-2|b-a|=b-3a.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.我们知道,|a|表示数a到原点的距离,这是绝对值的几何意义.进一步地,数轴上两个点A.B,分别用a,b表示,那么A、B两点之间的距离为AB=|a-b|.(思考一下,为什么?),利用此结论,回答以下问题:
(1)数轴上表示2和5的两点之间的距离是3,数轴上表示-2和-5的两点之间的距离是3,数轴上表示1和-3的两点之间的距离是4;
(2)数轴上表示x和-1的两点A、B之间的距离是|x+1|(列式表示),如果|AB|=2,那么x的值为1或-3;
(3)说出|x+1|+|x+2|表示的几何意义数轴上表示的点x到-1和-2两点的距离和,该式取的最小值是:1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.用配方法解方程x2-4x-5=0时,原方程应变形为(  )
A.(x-2)2=1B.(x-2)2=9C.(x-4)2=21D.(x-4)2=11

查看答案和解析>>

同步练习册答案