精英家教网 > 初中数学 > 题目详情
8.如图,已知点C在线段AB上,在AB的同侧作等边三角形△ACM和△BCN,连接AN,BM.
(1)求证:△CAN≌△CMB;
(2)已知∠NBM=35°,求∠ANB的度数;
(3)若∠NBM=n°,请用含n的代数式表示∠ANB的度数.

分析 (1)由△AMC和△CNB都为等边三角形,可得出AC=MC,CB=CN,且∠ACM=∠MCB=60°,利用等式的性质得到一对角相等,再利用SAS可得出△CAN≌△CMB;
(2)根据角的和差得到∠CBM=25°,根据全等三角形的性质得到∠ANC=∠CBM=25°,根据角的和差即可得到结论;
(3)根据角的和差得到∠CBM=(60-n)°,根据全等三角形的性质得到∠ANC=∠CBM=(60-n)°,根据角的和差即可得到结论.

解答 (1)证明:∵△AMC和△CNB都为等边三角形,
∴AC=MC,CN=CB,∠ACM=∠MCB=60°,
∴∠ACM+∠MCN=∠MCB+∠MCN,即∠ACN=∠MCB,
在△ACN和△MCB中,
∵$\left\{\begin{array}{l}{AC=MC}\\{∠ACN=∠MCB}\\{CN=CB}\end{array}\right.$,
∴△CAN≌△CMB(SAS);

(2)解:∵∠CBN=60°,∠NBM=35°,
∴∠CBM=25°,
∵△CAN≌△CMB,
∴∠ANC=∠CBM=25°,
∵∠CNB=60°,
∴∠ANB=85°;

(3)解:∵∠CBN=60°,∠NBM=n°,
∴∠CBM=(60-n)°,
∵△CAN≌△CMB,
∴∠ANC=∠CBM=(60-n)°,
∵∠CNB=60°,
∴∠ANB=60°+(60-n)°;
∴∠ANB=(120-n)°.

点评 本题考查了全等三角形的判定和性质,等边三角形的性质,熟练掌握全是三角形的性质定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.一个不透明的盒子中装有3个白球,5个红球和7个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的可能性是(  )
A.$\frac{7}{15}$B.$\frac{1}{3}$C.$\frac{1}{5}$D.$\frac{1}{15}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某农户承包荒山若干亩种果树2000棵,每年需对果园投资7800元,水果年总产量为18000千克,此水果在市场上每千克售a元,在果园自助销售每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需3人帮忙,每人每天付工资80元,农用车运费及其他各项税费平均每天60元,假定两种方式都能将水果全部销售出去.
(1)直接写出一年中两种方式出售水果的总销售金额是多少元.(用含a,b的最简式子表示)
(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好?
(3)为了提高收益,该农户明年准备增加投入资金加强果园管理,预计每增加投入1元,水果产量增加5千克,力争到明年纯收入达到16500元,而且该农户采用了(2)中较好的出售方式出售,销售单价与(2)一样,那么该农户要增加投资多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.已知|a|=8,|b|=2,|a-b|=b-a,则a+b的值是(  )
A.10B.-6C.-6或10D.-10

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时点Q从点B出发沿BC边向点C以每秒2cm的速度移动P、Q两点在分别到达B、C两点后就停止移动,设两点移动的时间为t秒,回答下列问题:
(1)如图1,当t为几秒时,△PBQ的面积等于5cm2
(2)如图2,当t=$\frac{3}{2}$秒时,试判断△DPQ的形状,并说明理由;
(3)如图3,以Q为圆心,PQ为半径作⊙Q.
①在运动过程中,是否存在这样的t值,使⊙Q正好与四边形DPQC的一边(或边所在的直线)相切?若存在,求出t值;若不存在,请说明理由;
②若⊙Q与四边形DPQC有三个公共点,请直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:若点P′为射线CP上一点,满足CP•CP′=r2,则称点P′为点P关于⊙C的反演点.右图为点P及其关于⊙C的反演点P′的示意图.
(1)如图1,当⊙O的半径为1时,分别求出点M(1,0),N(0,2),T($\frac{1}{2}$,$\frac{1}{2}$)关于⊙O的反演点M′,N′,T′的坐标;
(2)如图2,已知点A(1,4),B(3,0),以AB为直径的⊙G与y轴交于点C,D(点C位于点D下方),E为CD的中点.
①若点O,E关于⊙G的反演点分别为O′,E′,求∠E′O′G的大小;
②若点P在⊙G上,且∠BAP=∠OBC,设直线AP与x轴的交点为Q,点Q关于⊙G的反演点为Q′,请直接写出线段GQ′的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知二次函数y=2x2-4x-6.
(1)用配方法将y=2x2-4x-6化为y=a(x-h)2+k的形式;并写出对称轴和顶点坐标;
(2)在平面直角坐标系中,画出这个二次函数的图象;
(3)当x取何值时,y随x的增大而减少?
(4)当x取何值时,y=0,y>0,y<0;
(5)当0<x<4时,求y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2,其中正确结论的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,P是等边△ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转60°后,得到△P′AB.
(1)△APP′的形状是等边三角形;
(2)求∠APB的度数.

查看答案和解析>>

同步练习册答案