精英家教网 > 初中数学 > 题目详情

【题目】如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD米,点A、D、E在同一水平直线上,则A、B两点间的距离是_____米.(结果保留根号)

【答案】100(1+

【解析】如图,利用平行线的性质得∠A=60°,B=45°,在RtACD中利用正切定义可计算出AD=100,在RtBCD中利用等腰直角三角形的性质得BD=CD=100,然后计算AD+BD即可.

如图,

∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,

∴∠A=60°,B=45°,

RtACD中,∵tanA=

AD==100,

RtBCD中,BD=CD=100

AB=AD+BD=100+100=100(1+).

答:A、B两点间的距离为100(1+)米.

故答案为100(1+).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图①,他时常想,怎么走才能使每天的路程之和最短呢?

大数学家海伦曾用轴对称的方法巧妙的解决了这问题.

如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.

请你在下列的阅读、应用的过程中,完成解答.

(1)理由:如图③,在直线l上另取任一点C′,连接AC′,BC′,B′C′,

∵直线l是点B,B′的对称轴,点C,C′在l上,

∴CB=_______,C′B=_______.

∴AC+CB=AC+CB′=_______

在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′,即AC+CB最小.

归纳小结:

本问题实际是利用轴对称变换的思想,把A、B在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).

本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.

(2)模型应用

如图 ④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点,求EF+FB的最小值.

解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC对称,连接ED交AC于F,则EF+FB的最小值就是线段DE的长度,EF+FB的最小值是_______

如图⑤,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是弧AD的中点,在直径CD上找一点P,使BP+AP的值最小,则BP+AP的最小值是_______

如图⑥,一次函数y=-2x+4的图象与x,y轴分别交于A,B两点,点O为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求PC+PD的最小值,并写出取得最小值时P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是(

A. 20 B. 25 C. 30 D. 32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数学课本中,有这样一道题:已知:如(图1),∠B+C=∠BEC求证:ABCD

1)请补充下面证明过程

证明:过点E,做EFAB,如(图2

∴∠B=∠   

∵∠B+C=∠BECBEF+FEC=∠BEC(已知)

∴∠B+C=∠BEF+FEC(等量代换)

∴∠   =∠   (等式性质)

EF   

EFAB

ABCD(平行于同一条直线的两条直线互相平行)

2)请再选用一种方法,加以证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,ADBC边上的高,AE、BF分别是∠BAC、ABC的平分线,∠BAC=50°,ABC=60°,则∠EAD+ACD=(  )

A. 75° B. 80° C. 85° D. 90°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A品牌蓝球多花50元.

(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?

(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).

(1)如图1,若EFBC,求证:

(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;

(3)如图3,若EF上一点G恰为ABC的重心,,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某客运站行车时刻表如图,若全程保持匀速行驶,则当快车出发______小时后,两车相距25km.

哈尔滨长春

出发时间

到站时间

里程(km

普通车

7:00

11:00

300

快车

7:30

10:30

300

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8 cm,正方形A的面积是10cm2B的面积是11 cm2C的面积是13 cm2,则D的面积为____cm2

查看答案和解析>>

同步练习册答案