【题目】如图,等腰直角三角形,,长为,若直线把分成面积比为的两部分,则的值为____.
【答案】或
【解析】
根据题意可得A(1,1),求得直线AB的解析式为y=﹣x+2,联立,求得D点横坐标为,令y=0,得C(0,m),然后分S△BCD=或两种情况,分别求得符合题意的m的值即可.
解:∵等腰直角三角形,,长为,
∴A(1,1),B(0,2),
设直线AB的解析式为y=kx+b,
将A(1,1),B(0,2)代入解得:y=﹣x+2,
联立,得﹣x+2,
解得x=,即D点横坐标为,
令x=0,则y=m,即C(0,m),
∴BC=2﹣m,
又∵直线把分成面积比为的两部分,
∴当S△BCD=S△ABO时,··(2﹣m)=,
解得m=1,或m=(舍去);
当S△BCD=S△ABO时,··(2﹣m)=,
解得x=,或m=5(舍去),
综上,m=或.
故答案为:或.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF
(1)求证:四边形BCFE是菱形;
(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,点B为⊙O上一点,PA切⊙O于点A,PB与AC的延长线交于点M,∠CAB= ∠APB.
(1)求证:PB是⊙O的切线;
(2)当sinM=,OA=2时,求MB,AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:正方形绕点顺时针旋转至正方形,连接.
(1)如图,求证:;
(2)如图,延长交于,延长交于,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BPPC=ABCD(不需证明)
探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,结论BPPC=ABCD仍成立吗?请说明理由?
拓展:如图③,在△ABC中,点P是BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=4 ,CE=3,则DE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形纸片中,,,把沿对角线折叠,点落在处,交于点。再次折叠,使点与点重合,为折痕,点在上,点在上,交于点.
(1)求的值;
(2)求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在大楼AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1: ,高为DE,在斜坡下的点C处测得楼顶B的仰角为64°,在斜坡上的点D处测得楼顶B的仰角为45°,其中A、C、E在同一直线上.
(1)求斜坡CD的高度DE;
(2)求大楼AB的高度;(参考数据:sin64°≈0.9,tan64°≈2).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,将点P绕点T(t,0)(1>0)旋转180°得到点Q,则称点Q为点P的“发展点”.
(1)当t=2时,点(0,0)的“发展点”坐标为______,点(-1,-1)的“发展点”坐标为______.
(2)若t>3,则点(3,4)的“发展点”的横坐标为______(用含t的代数式表示).
(3)若点P在直线y=2x+6上,其“发展点”Q在直线y=2x-8上,求点T的坐标.
(4)点P(3,3)在抛物线y=-x2+k上,点M在这条抛物线上,点Q为点P的“发展点”.若△PMQ是以点M为直角顶点的等腰直角三角形,求t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com