【题目】如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作AE⊥CD,交CD的延长线于点E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)已知AE=4cm,CD=6cm,求⊙O的半径.
【答案】(1)证明见解析
【解析】
试题分析:(1)连接OA,因为点A在⊙O上,所以只要证明OA⊥AE即可;由同圆的半径相等得:OA=OD,则∠ODA=∠OAD,根据角平分线可知:∠OAD=∠EDA,所以EC∥OA,由此得OA⊥AE,则AE是⊙O的切线;
(2)过点O作OF⊥CD,垂足为点F,证明四边形AOFE是矩形,得OF=AE=4cm,由垂径定理得:DF=3,根据勾股定理求半径OD的长.
试题解析:(1)连结OA,∵OA=OD,∴∠ODA=∠OAD,∵DA平分∠BDE,
∴∠ODA=∠EDA,∴∠OAD=∠EDA,∴EC∥OA,
∵AE⊥CD,∴OA⊥AE,
∵点A在⊙O上,
∴AE是⊙O的切线;
(2)过点O作OF⊥CD,垂足为点F,∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE是矩形,∴OF=AE=4cm,
又∵OF⊥CD,∴DF=CD=3cm,在Rt△ODF中,OD==5cm,
即⊙O的半径为5cm.
科目:初中数学 来源: 题型:
【题目】“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+ ﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是 , 并运用这个公式求得图2中多边形的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧的长度y与所挂物体的质量x的几组对应值.
(1)上述反映了哪两个变量之问的关系?哪个是自变量?哪个是因变量?
(2)当所挂重物为3kg时,弹簧有多长?不挂重物呢?
(3)若所挂重物为6kg时(在弹簧的允许范围内),你能说出此时弹簧的长度吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近年来我市大力发展旅游产业,旅游总收入从2013年的150亿元上升到2015年的200亿元,设这两年旅游总收入的年平均增长率为x,则可列方程 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com