【题目】如图1,我们已经学过:点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某校的数学拓展性课程班,在进行知识拓展时,张老师由黄金分割点拓展到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.
如图2,在△ABC中,∠A=36°,AB=AC,∠C的平分线交AB于点D.
(1)证明点D是AB边上的黄金分割点;
(2)证明直线CD是△ABC的黄金分割线.
【答案】(1)详见解析;(2)详见解析.
【解析】
(1)证明AD=CD=BC,证明△BCD∽△BCA,得到.则有,所以点D是AB边上的黄金分割点;
(2)证明,直线CD是△ABC的黄金分割线;
解:(1)点D是AB边上的黄金分割点.理由如下:
AB=AC,∠A=,∠B=∠ACB=.
CD是角平分线, ∠ACD=∠BCD=,
∠A=∠ACD,AD=CD.
∠CDB=180-∠B-∠BCD=,
∠CDB=∠B,BC=CD.
BC=AD.
在△BCD与△BCA中, ∠B=∠B,∠BCD=∠A=,
△BCD∽△BCA,
点D是AB边上的黄金分割点.
(2)直线CD是△ABC的黄金分割线.理由如下:
设ABC中,AB边上的高为h,则
,,,
由(1)得点D是AB边上的黄金分割点,
,
直线CD是△ABC的黄金分割线
科目:初中数学 来源: 题型:
【题目】某校准备组织290名师生进行野外考察活动,行李共有100件,学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人(不含司机)和10件行李,乙种汽车每辆最多能载30人(不含司机)和20件行李设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=x+和x轴上,△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,),那么点A3的纵坐标是( )
A. B. 2cm C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠ABC=∠ADC,AB∥CD,E为射线BC上一点,AE平分∠BAD.
(1)如图1,当点E在线段BC上时,求证:∠BAE=∠BEA.
(2)如图2,当点E在线段BC延长线上时,连接DE,若∠ADE=3∠CDE,∠AED=60°,求∠CED的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GEGD.
(1)求证:∠ACF=∠ABD;
(2)连接EF,求证:EFCG=EGCB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中国高铁近年来用震惊世界的速度不断发展,已成为当代中国一张耀眼的“国家名片”。修建高铁时常常要逢山开道、遇水搭桥。如图,某高铁在修建时需打通一直线隧道MN(M、N为山的两侧),工程人员为了计算MN两点之间的直线距离,选择了在测量点A、B、C进行测量,点B、C分别在AM、AN上,现测得AM=1200米,AN=2000米,AB=30米,BC=45米,AC=18米,求直线隧道MN的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,
(1)求证:AC2=ABAD;
(2)求证:CE∥AD;
(3)若AD=4,AB=6,求 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com