【题目】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜边AB上取一点D,过点D作DE∥BC,交AC于点E,现将△ADE绕点A旋转一定角度到如图2所示的位置(点D在△ABC的内部),使得∠ABD+∠ACD=90°.
(1)①求证:△ABD∽△ACE;
②若CD=1,BD= ,求AD的长.
(2)如图3,将原题中的条件“AC=BC”去掉,其它条件不变,设 = =k,若CD=1,BD=2,AD=3,求k的值.
(3)如图4,将原题中的条件“∠ACB=90°”去掉,其它条件不变,若 = = ,设CD=m,BD=n,AD=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
【答案】
(1)
解:①∵DE∥BC,
∴ ,
由旋转知,∠EAC=∠DAB,
∴△ABD∽△ACE,
②在Rt△ABC中,AC=BC,
∴AB= AC,
由①知,△ABD∽△ACE,
∴∠ABD=∠ACE,
∵∠ACD+∠ABD=90°,
∴∠ACE+∠ACD=90°,
∴∠DCE=90°,
∵△ABD∽△ACE,
∴ = ,
∴AD= AE,BD= CE,
∵BD= ,
∴CE= ,
在Rt△CDE中,CD=1,CE= ,
根据勾股定理得,DE=2,
在Rt△ADE中,AD=AE,
∴AD= DE=2
(2)
解:由旋转知,∠EAC=∠DAB,
∵ =
∴△ABD∽△ACE,
∴ =k,
∵AD=3,BD=2,
∴AE=kAD=3k,CE=kBD=2k,
∵△ABD∽△ACE,
∴∠ABD=∠ACE,
∵∠ACD+∠ABD=90°,
∴∠ACE+∠ACD=90°,
∴∠DCE=90°,
在Rt△CDE中,DE2=CD2+CE2=1+4k2,
在Rt△ADE中,DE2=AD2﹣AE2=9﹣9k2,
∴1+4k2=9﹣9k2,
∴k=﹣ (舍)或k=
(3)
解:由旋转知,∠EAC=∠DAB,
∵ =
∴△ABD∽△ACE,
∴ =
∵AD=p,BD=n,
∴AE= AD= p,CE= BD= n,
∵△ABD∽△ACE,
∴∠ABD=∠ACE,
∵∠ACD+∠ABD=90°,
∴∠ACE+∠ACD=90°,
∴∠DCE=90°,
在Rt△CDE中,DE2=CD2+CE2=m2+ n2,
∵DE=AE= p,
∴ p2=m2+ n2,
∴9p2=25m2+9n2
【解析】(1)①先利用平行线分线段成比例定理得, ,进而得出结论;②利用①得出的比例式求出CE,再判断出∠DCE=90°,利用勾股定理即可得出结论;(2)同(1)的方法判断出△ABD∽△ACE,即可得出AE=3k,CE=2k,同(1)的方法得出∠DCE=90°,利用勾股定理得出DE的平方,用DE的平方建立方程求解即可;(3)同(2)的方法得出DE2=m2+ n2 , 而DE=AE= p,即可得出结论;
科目:初中数学 来源: 题型:
【题目】如图,已知点A、P在反比例函数y=(k<0)的图象上,点B、Q在直线y=x﹣3的图象上,点B的纵坐标为﹣1,AB⊥x轴,且S△OAB=4,若P、Q两点关于y轴对称,设点P的坐标为(m,n).
(1)求点A的坐标和k的值;
(2)求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△BDE都是等腰直角三角形,其中∠ACB=∠BDE=90°,AC=BC,BD=ED,连接AE,点F是AE的中点,连接DF.
(1)如图1,若B、C、D共线,且AC=CD=2,求BF的长度;
(2)如图2,若A、C、F、E共线,连接CD,求证:DC= DF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,E是AD的中点,连接CE并延长,与BA的延长线交于点F. 请你找出图中与AF相等的一条线段,并加以证明.(不再添加其它线段,不再标注或使用其它字母)
(1)结论:AF= .
(2)证明结论。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.
根据以上信息解答下列问题:
(1)这次抽样调查的样本容量是;
(2)通过“电视”了解新闻的人数占被调查人数的百分比为;扇形统计图中,“手机上网”所对应的圆心角的度数是;
(3)请补全条形统计图;
(4)若该市约有70万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E、G分别是边AD、BC的中点,AF= AB.
(1)求证:EF⊥AG;
(2)若点F、G分别在射线AB、BC上同时向右、向上运动,点G运动速度是点F运动速度的2倍,EF⊥AG是否成立(只写结果,不需说明理由)?
(3)正方形ABCD的边长为4,P是正方形ABCD内一点,当S△PAB=S△OAB , 求△PAB周长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,DB∥AC,且DB= AC,E是AC的中点,
(1)求证:BC=DE;
(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com