【题目】如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.
(1)若DE=BF,求证:四边形AFCE是平行四边形;
(2)若四边形AFCE是菱形,求菱形AFCE的周长.
【答案】
(1)证明:∵四边形ABCD为矩形,
∴AB=CD,AB∥CD,
∵DE=BF,
∴AF=CE,AF∥CE,
∴四边形AFCE是平行四边形
(2)解:∵四边形AFCE是菱形,
∴AE=CE,
设DE=x,
则AE= ,CE=8﹣x,
则 =8﹣x,
化简有16x﹣28=0,
解得:x= ,
将x= 代入原方程检验可得等式两边相等,
即x= 为方程的解.
则菱形的边长为:8﹣ = ,
周长为:4× =25,
故菱形AFCE的周长为25
【解析】(1)首先根据矩形的性质可得AB平行且等于CD,然后根据DE=BF,可得AF平行且等于CE,即可证明四边形AFCE是平行四边形;(2)根据四边形AFCE是菱形,可得AE=CE,然后设DE=x,表示出AE,CE的长度,根据相等求出x的值,继而可求得菱形的边长及周长.
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,延长BC至M,使BM=DN,连接MN交BD延长线于点E.
(1)求证:BD+2DE=BM.
(2)如图2,连接BN交AD于点F,连接MF交BD于点G.若AF:FD=1:2,且CM=2,则线段DG=_____;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某校初三学生体能水平,体育老师从刚结束的“女生800米,男生1000米”体能测试成绩中随机抽取了一部分同学的成绩,按照“优秀、良好、合格、不合格”进行了统计,并绘制了下列不完整的统计图,
请根据图中信息解答下列问题:
(1)体育老师总共选取了多少人的成绩?扇形统计图中“优秀”部分的圆心角度数是多少?
(2)把条形统计图补充完整;
(3)已知某校初三在校生有2500人,从统计情况分析,请你估算此次体能测试中达到“优秀”水平的大约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.
(1)求证:FG=FB.
(2)若tan∠F= ,⊙O的半径为4,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( )
A.60πcm2
B.65πcm2
C.120πcm2
D.130πcm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx(k为常数,k≠0)与双曲线y= (m为常数,m>0)的交点为A、B,AC⊥x轴于点C,∠AOC=30°,OA=2
(1)求m、k的值;
(2)点P在y轴上,如果S△ABP=3k,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.
(1)求线段CD的长及顶点P的坐标;
(2)求抛物线的函数表达式;
(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S△QAB , 且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离约为多少米?(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com