精英家教网 > 初中数学 > 题目详情

【题目】九年级数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价y(单位:元/件)与时间x(单位:天)的函数关系式为y=;在第x天的销售量p(单位:件)与时间x(单位:天)的函数关系的相关信息如下表.已知商品的进价为30元/件,每天的销售利润为w(单位:元).

时间x(天)

1

30

60

90

每天销售量p(件)

198

140

80

20

(1)求出w与x的函数关系式;

(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;

(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?

【答案】(1)w=;(2)6050元;(3)5600元.

【解析】(1)根据单价乘以数量,可得利润,可得答案;

(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;

(3)根据二次函数值大于或等于5600,一次函数值大于或等于56000,可得不等式,根据解不等式组,可得答案.

解:(1)设每天的销售量p与时间x的函数关系式为p=mx+n

∵p=mx+n过点(60,80)、(30,140),∴,解得:

∴p=﹣2x+200(0≤x≤90,且x为整数),

当0≤x≤50时,w=(y﹣30)p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;

当50<x≤90时,w=(90﹣30)(﹣2x+200)=﹣120x+12000.

综上所示,每天的销售利润w与时间x的函数关系式是

w=

(2)当0≤x≤50时,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,

∵a=﹣2<0且0≤x≤50,∴当x=45时,w取最大值,最大值为6050元.

当50<x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,

∴当x=50时,w取最大值,最大值为6000元.∵6050>6000,

∴当x=45时,w最大,最大值为6050元.

即销售第45天时,当天获得的销售利润最大,最大利润是6050元.

(3)当0≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,

解得:30≤x≤50, 50﹣30+1=21(天);

当50<x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,

解得:50<x≤53,∵x为整数,∴50<x≤53,53﹣50=3(天).

综上可知:21+3=24(天),

故该商品在销售过程中,共有24天每天的销售利润不低于5600元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】ABC的三边长分别是abc,且an21b2ncn2+1

1)判断三角形的形状;

2)若以边b为直径的半圆面积为,求△ABC的面积;

3)若以边ab为直径的半圆面积分别为pq,求以边c为直径的半圆面积.(用pq表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,AB=AC=10cmBC=8cm,点DAB的中点.如果点P在线段BC上以3cm/s的速度由点BC点运动,同时,点Q在线段CA上由点CA点运动.

1)若点Q的运动速度与点P的运动速度相等,经过1秒后,BPDCQP是否全等,请说明理由.

2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPDCQP全等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分)如图1,在Rt△ABC中,∠B=90°BC=2AB=8,点DE分别是边BCAC的中点,连接DE. △EDC绕点C按顺时针方向旋转,记旋转角为α.

1)问题发现

时,时,

2)拓展探究

试判断:当0°≤α360°时,的大小有无变化?请仅就图2的情况给出证明.

3)问题解决

△EDC旋转至ADE三点共线时,直接写出线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).

(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个直角三角形纸片的顶点A在MON的边OM上移动,移动过程中始终保持ABON于点B,ACOM于点A.MON的角平分线OP分别交AB、AC于D、E两点.

(1)点A在移动的过程中,线段AD和AE有怎样的数量关系,并说明理由.

(2)点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,猜想线段DF和AE有怎样的关系,并说明理由.

(3)若MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,∠ACB90°sinABC8,点DAB的中点,过点BCD的垂线,垂足为点E.

(1)求线段CD的长;

(2)cosABE的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,点是直线上的一点,连接,将线段绕点逆时针旋转,得到线段,连接

1)操作发现

如图1,当点在线段上时,请你直接写出的位置关系为______;线段的数量关系为______

   

2)猜想论证

当点在直线上运动时,如图2,是点在射线上,如图3,是点在射线上,请你写出这两种情况下,线段的数量关系,并对图2的结论进行证明;

3)拓展延伸

,请你直接写出的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某天,小王去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程(千米)与时间(分)的关系的图象,根据图象信息,下列说法正确的是(

A. 小王去时的速度大于回家的速度B. 小王在朋友家停留了10分钟

C. 小王去时所花时间少于回家所花时间D. 小王去时走上坡路施,回家时走下坡路

查看答案和解析>>

同步练习册答案