【题目】如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连结CD,过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是( )
A. 4个 B. 3个 C. 2个 D. 1个
【答案】C
【解析】
根据同角的余角相等求出∠ABG=∠BCD,然后利用“角边角”证明△ABG和△BCD
全等,根据全等三角形对应边相等可得AG=BD,然后求出,再求出△AFG和
△CFB相似,根据相似三角形对应边成比例可得从而判断出①正确;求出
,然后根据FE≠BE判断出②错误;根据相似三角形对应边成比例求出
再根据等腰直角三角形的性质可得然后整理即可得到判断出
③正确;过点F作MF⊥AB于M,根据三角形的面积整理即可判断出④错误.
∵∠ABC=90°,BG⊥CD,
∴∠ABG+∠CBG=90°,∠BCD+∠CBG=90°,
∴∠ABG=∠BCD,
在△ABC和△BCD中,
∴△ABG≌和△BCD(ASA),
∴AG=BD,
∵点D是AB的中点,
∴
∴
在Rt△ABC中,∠ABC=90°,
∴AB⊥BC,
∵AG⊥AB,
∴AG∥BC,
∴△AFG∽△CFB,
∴
∵BA=BC,
∴故①正确;
∵△AFG∽△CFB,
∴
∴
∵FE≠BE,
∴点F是GE的中点不成立,故②错误;
∵△AFG∽△CFB,
∴
∴
∵
∴故③正确;
过点F作MF⊥AB于M,则FM∥CB,
∴
∵
∴ 故④错误.
综上所述,正确的结论有①③共2个.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图所示,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,△BCE的面积是6,则k=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,, 是的角平分线.
(1)如图 1,求证:;
(2)如图 2,作的角平分线交线段于点,若,求的面积;
(3)如图 3,过点作于点,点是线段上一点(不与 重合),以为一边,在 的下方作,交延长线于点,试探究线段,与之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.
(1)OC的长为 ;
(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ= ;
(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.
(1)求该抛物线的解析式;
(2)根据图象直接写出不等式ax2+(b﹣1)x+c>2的解集;
(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ=时,求P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.
(1)求A,B两点间的距离(结果精确到0.1km).
(2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56°,求此时雷达站C和运载火箭D两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学课外活动小组在做气体压强实验时,获得压强p(Pa)与体积V(cm3)之间有下列对应数据:
p(Pa) | … | 1 | 2 | 3 | 4 | 5 | … |
V(cm3) | … | 6 | 3 | 2 | 1.5 | 1.2 | … |
根据表中提供的信息,回答下列问题:
(1)猜想p与V之间的关系,并求出函数关系式;
(2)当气体的体积是12cm3时,压强是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
(1)如图1,求证:KE=GE;
(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;
(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com