【题目】在中,,, 是的角平分线.
(1)如图 1,求证:;
(2)如图 2,作的角平分线交线段于点,若,求的面积;
(3)如图 3,过点作于点,点是线段上一点(不与 重合),以为一边,在 的下方作,交延长线于点,试探究线段,与之间的数量关系,并说明理由.
【答案】(1)见解析;(2)的面积=;(3)若点在上时,,理由见解析;若点在上时,,理由见解析.
【解析】
(1)利用角平分线的性质,证得,再证得,在中,利用角所对直角边等于斜边的一半即可证得结论;
(2)作,先证得,在和中,分别利用角所对直角边等于斜边的一半求得BC和CD的长,从而求得的长,即可求得的面积;
(3)分两种情况讨论,点在上和点在上时,采用补短的方法,利用全等三角形的判定和性质即可证明.
(1)在中,,,
∴,
∵是的角平分线,
∴,
∴,
在中,,,
∴,
∴;
(2)如图2,过点作,
由(1)得,
∵平分,
,
,
,
,
在中,,,,
,
,
在中,,,
,
,
,
∴的面积;
(3)若点在上时,,
理由如下:如图3所示:延长使得,连接,
,是的角平分线,于点,
,
,且,
是等边三角形,
,
,
在和中,
,
,
,
;
(3)若点在上时,,
理由如下:如图4,延长至,使得,连接,
由(1)得,
∵于点,
∴,
∴,
∴是等边三角形,
,
,
,
即,
在和中,
,
,
,
,
.
科目:初中数学 来源: 题型:
【题目】如图,直线分别与轴,轴交于点,,过点的直线交轴于点.为的中点,为射线上一动点,连结,,过作于点.
(1)直接写出点,的坐标:(______,______),(______,______);
(2)当为中点时,求的长;
(3)当是以为腰的等腰三角形时,求点坐标;
(4)当点在线段(不与,重合)上运动时,作关于的对称点,若落在轴上,则的长为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB,若对于平面内一点C,当△ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”.
(1)在点C1(﹣2,3+2),点C2(0,﹣2),点C3(3+,﹣)中,线段AB的“等长点”是点________;
(2)若点D(m,n)是线段AB的“等长点”,且∠DAB=60°,求点D的坐标;
(3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图AM∥BN,C是BN上一点, BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.
(1)求证:△ADO≌△CBO.
(2)求证:四边形ABCD是菱形.
(3)若DE = AB = 2,求菱形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.
其中正确的结论个数为( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是宜宾市某周内最高气温的折线统计图,关于这7天的日气温的说法,错误的是( )
A.最高气温是30℃
B.最低气温是20℃
C.出现频率最高的是28℃
D.平均数是26℃
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了丰富学生课余生活,开展了“第二课堂”活动,推出了以下四种选修课程:、绘画;、唱歌;、演讲;、书法.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图,请结合统计图中的信息解决下列问题:
(1)这次抽查的学生人数是多少人?
(2)将条形统计图补充完整;
(3)在扇形统计图中,求选课程的人数所对的圆心角的度数;
(4)如果该校共有1200名学生,请你估计该校报课程的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连结CD,过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S△ABC=5S△BDF,其中正确的结论序号是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.
(1)如图1,若四边形ABCD是矩形,且DE⊥CF.则DECD CFAD(填“<”或“=”或“>”);
(2)如图2,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得DECD=CFAD成立?并证明你的结论;
(3)如图3,若BA=BC=3,DA=DC=4,∠BAD=90°,DE⊥CF.则的值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com