【题目】如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB,若对于平面内一点C,当△ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”.
(1)在点C1(﹣2,3+2),点C2(0,﹣2),点C3(3+,﹣)中,线段AB的“等长点”是点________;
(2)若点D(m,n)是线段AB的“等长点”,且∠DAB=60°,求点D的坐标;
(3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围.
【答案】(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤
【解析】
(1)直接利用线段AB的“等长点”的条件判断;
(2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;
(3)先判断出直线y=kx+3与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论.
(1)∵A(0,3),B(,0),
∴AB=2,
∵点C1(﹣2,3+2),
∴AC1==2,
∴AC1=AB,
∴C1是线段AB的“等长点”,
∵点C2(0,﹣2),
∴AC2=5,BC2==,
∴AC2≠AB,BC2≠AB,
∴C2不是线段AB的“等长点”,
∵点C3(3+,﹣),
∴BC3==2,
∴BC3=AB,
∴C3是线段AB的“等长点”;
故答案为:C1,C3;
(2)如图1,
在Rt△AOB中,OA=3,OB=,
∴AB=2,tan∠OAB==,
∴∠OAB=30°,
当点D在y轴左侧时,
∵∠DAB=60°,
∴∠DAO=∠DAB﹣∠BAO=30°,
∵点D(m,n)是线段AB的“等长点”,
∴AD=AB,
∴D(﹣,0),
∴m=,n=0,
当点D在y轴右侧时,
∵∠DAB=60°,
∴∠DAO=∠BAO+∠DAB=90°,
∴n=3,
∵点D(m,n)是线段AB的“等长点”,
∴AD=AB=2,
∴m=2;
∴D(,3)
(3)如图2,
∵直线y=kx+3k=k(x+3),
∴直线y=kx+3k恒过一点P(﹣3,0),
∴在Rt△AOP中,OA=3,OP=3,
∴∠APO=30°,
∴∠PAO=60°,
∴∠BAP=90°,
当PF与⊙B相切时交y轴于F,
∴PA切⊙B于A,
∴点F就是直线y=kx+3k与⊙B的切点,
∴F(0,﹣3),
∴3k=﹣3,
∴k=﹣,
当直线y=kx+3k与⊙A相切时交y轴于G切点为E,
∴∠AEG=∠OPG=90°,
∴△AEG∽△POG,
∴,
∴=,解得:k=或k=(舍去)
∵直线y=kx+3k上至少存在一个线段AB的“等长点”,
∴﹣≤k≤,
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点,
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边中,厘米,厘米,如果点以厘米的速度运动.
(1)如果点在线段上由点向点运动.点在线段上由点向点运动,它们同时出发,若点的运动速度与点的运动速度相等:
①经过“秒后,和是否全等?请说明理由.
②当两点的运动时间为多少秒时,刚好是一个直角三角形?
(2)若点的运动速度与点的运动速度不相等,点从点出发,点以原来的运动速度从点同时出发,都顺时针沿三边运动,经过秒时点与点第一次相遇,则点的运动速度是__________厘米秒.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,△BCE的面积是6,则k=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P与点A重合;当伞慢慢撑开时,动点P由A向B移动;当点P到达点B时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x分米.
(1)求x的取值范围;
(2)若∠CPN=60°,求x的值;
(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y,求y关于x的关系式(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?
(1)特殊探究:若,则_________度,________度,_________度;
(2)类比探索:请猜想与的关系,并说明理由;
(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出,与满足的数量关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在ABCD中,对角线AC,BD交于点O,AB⊥AC,AB=1,BC=.
(1)求平行四边形ABCD的面积S□ABCD;
(2)求对角线BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,, 是的角平分线.
(1)如图 1,求证:;
(2)如图 2,作的角平分线交线段于点,若,求的面积;
(3)如图 3,过点作于点,点是线段上一点(不与 重合),以为一边,在 的下方作,交延长线于点,试探究线段,与之间的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.
(1)求A,B两点间的距离(结果精确到0.1km).
(2)当运载火箭继续直线上升到D处,雷达站测得其仰角为56°,求此时雷达站C和运载火箭D两点间的距离(结果精确到0.1km).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com