【题目】正方形四边条边都相等,四个角都是90°.如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.
(1)如图1,当点E在线段BC上(不与点B、C重合)时:
①判断△ADG与△ABE是否全等,并说明理由;
②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;
(2)如图2,当点E在射线CN上(不与点C重合)时:
①判断△ADG与△ABE是否全等,不需说明理由;
②过点F作FH⊥MN,垂足为点H,已知GD=4,求△CFH的面积.
【答案】
(1)解:①△BAE≌△DAG.理由如下:
∵四边形ABCD和四边形AEFG是正方形,
∴AB=AD,AE=AG,∠BAD=∠EAG=90°,
∴∠BAE+∠EAD=∠DAG+∠EAD,
∴∠BAE=∠DAG.
∴△BAE≌△DAG;
②CH=BE.理由如下:
由已知可得∠EAG=∠BAD=∠AEF=90°,
由①得∠FEH=∠BAE=∠DAG,
又∵G在射线CD上,
∠GDA=∠EHF=∠EBA=90°,AG=AE=EF,
∴∠BAE=∠DAG=∠EFH,
∴△EFH≌△GAD,△EFH≌△ABE,
∴EH=AD=BC,
∴CH=BE.
(2)解:①△BAE≌△DAG.理由如下:
∵四边形ABCD和四边形AEFG是正方形,
∴AB=AD,AE=AG,∠ADG=∠ABE=90°,
∴在Rt△BAE与Rt△DAG中,
∴△BAE≌△DAG;(HL)
②由(1)同理可得:△EFH≌△AGD,△EFH≌△AEB,
∴GD=FH=CH=4,
∴△CFH的面积为: FHCH= ×4×4=8
【解析】(1)①利用正方形的性质及SAS定理求出△ADG≌△ABE,再利用全等三角形的性质即可解答;②利用正方形的性质及SAS定理求出△ADG≌△ABE,再利用全等三角形的性质即可解答;(2)①利用HL定理证明△BAE≌△DAG即可;②利用△EFH≌△GAD,△EFH≌△ABE,即可得出GD=FH=CH=4,再利用△CFH的面积公式求出.
科目:初中数学 来源: 题型:
【题目】已知点A(0,1),B(2,0),C(4,3)
(1)画出△ABC,请求△ABC的面积;
(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中,正确的个数为( )
①过一点有无数条直线与已知直线平行; ②如果a∥b,a∥c,那么b∥c;
③如果两线段不相交,那么它们就平行; ④如果两直线不相交,那么它们就平行.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合)。若四边形OBCD是平行四边形时,那么的数量关系是________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在方格纸中
(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;
(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′;
(3)计算△A′B′C′的面积S.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知方程组甲由于看错了方程(1)中的a,得到方程组的解为 , 乙由于看错了方程(2)中的b,得到方程组的解为 , 若按正确的计算,求x+6y的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com