精英家教网 > 初中数学 > 题目详情

【题目】如图,AB、CD为 O的直径,弦AE//CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使 PED= C.

(1)求证:PE是 O的切线;
(2)求证:ED平分 BEP;
(3)若 O的半径为5,CF=2EF,求PD的长.

【答案】
(1)

证明:如图,连接OE.
∵CD是圆O的直径,
∴∠CED=90°.
∵OC=OE,
∴∠1=∠2.
又∵∠PED=∠C,即∠PED=∠1,
∴∠PED=∠2,
∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,
∴OE⊥EP,
又∵点E在圆上,
∴PE是⊙O的切线;


(2)

证明:∵AB、CD为⊙O的直径,
∴∠AEB=∠CED=90°,
∴∠3=∠4(同角的余角相等).
又∵∠PED=∠1,AE//CD,
∴∠PED=∠1=∠3=∠4,
即ED平分∠BEP.


(3)

解:设EF=x,则CF=2x,
∵⊙O的半径为5,
∴OF=2x-5,
在RT△OEF中,OE2=OF2+EF2,即52=x2+(2x-5)2
解得x=4,
∴EF=4,
∴BE=2EF=8,CF=2EF=8,
∴DF=CD-CF=10-8=2,
∵AB为⊙O的直径,
∴∠AEB=90°,
∵AB=10,BE=8,
∴AE=6,
∵∠BEP=2∠4=2∠1=∠A,∠EFP=∠AEB=90°,
∴△AEB∽△EFP,
=,即=

∴PF=

∴PD=PF-DF=-2=


【解析】(1)连接OE.要证明PE是 ⊙ O的切线,则要证明∠OEP=∠CED=90°,则需要证明 ∠PED=∠2,而∠1=∠2.∠PED=∠1,可证得;
(2)根据同角的余角相等,可得∠3=∠4,又由∠PED=∠1,AE//CD,可得∠PED=∠1=∠3=∠4,即可证得;
(3)设EF=x,则CF=2x,根据勾股定理OE2=OF2+EF2 , 求出EF,BE,CF,DF;根据∠BEP=2∠4=2∠1=∠A,∠EFP=∠AEB=90°,得到△AEB∽△EFP,从而根据相似三角形的性质求得PF,则PD=PF-DF.
【考点精析】关于本题考查的切线的判定定理和相似三角形的判定与性质,需要了解切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题情境:已知:如图1,直线ABCD,现将直角三角板△PMN放入图中,其中∠MPN=90°,点P始终在直线MN右侧.PMAB于点E,PNCD于点F,试探究:∠PFD与∠AEM的数量关系.

(1)特例如图2,当点P在直线AB上(即点E与点P重合)时,直接写出∠PFD与∠AEM的数量关系,不必证明;

(2)类比探究:如图1,当点PABCD之间时,猜想∠PFD与∠AEM的数量关系,并说明理由;

(3)拓展延伸:如图3,当点P在直线AB的上方时,PNAB于点H,其他条件不变,猜想∠PFD与∠AEM的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某科技有限公司准备购进AB两种机器人来搬运化工材料,已知购进A种机器人2个和B种机器人3个共需16万元;购进A种机器人3个和B种机器人2个共需14万元.请解答下列问题:
(1)求AB两种机器人每个的进价;
(2)已知该公司购买B种机器人的个数比购买A种机器人的个数的2倍多4个,如果需要购买AB两种种机器人的总个数不少于28个,且该公司购买的AB两种种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李老师用手机软件记录了某个月(30天)每天走路的步数(单位:万步),她将记录的结果绘制成了如图所示的统计图,在李老师每天走路的步数这组数据中,众数与中位数分别为(
A.1.2与1.3
B.1.4与1.35
C.1.4与1.3
D.1.3与1.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.

甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.

乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4.

(1)求如图所示的yx的函数解析式;(不要求写取值范围)

(2)如果某学校目前的绿化面积是1200平方米.试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王阿姨销售草莓,草莓成本价为每千克10元,她发现当销售单价为每千克至少10元,但不高于每千克20元时,销售量y(千克)与销售单价x(元)的函数图象如图所示:
(1)求y关于x的函数解析式,并写出它的定义域;
(2)当王阿姨销售草莓获得的利润为800元时,求草莓销售的单价.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:

(1)如图①,求证:OB∥AC.

(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.求∠EOC的度数.

(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax+bx+c的图像如图所示,则代数式(a+b)-c的值( ).

A.大于0
B.等于0
C.小于0
D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABC中,AD平分 BAC,按如下步骤作图:
第一步,分别以点A、D为圆心,以大于 AD的长为半径在AD两侧做弧,交于两点M、N;
第二步,连接MN分别交AB、AC于点E、F;
第三步,连接DE、DF.
若BD=6,AF=4,CD=3,则BE的长是( ).

A.2
B.4
C.6
D.8

查看答案和解析>>

同步练习册答案