【题目】如图,以AB为直径的半圆O交AC于点D,且点D为AC的中点,DE⊥BC于点E,AE交半圆O于点F,BF的延长线交DE于点G.
(1)求证:DE为半圆O的切线;
(2)若GE=1,BF=,求EF的长.
【答案】(1)证明见解析;(2).
【解析】
(1)连接OD,易得OD为△ABC的中位线,则OD∥BC,由于DE⊥BC,所以DE⊥DO,然后根据切线的判定定理即可得到结论.
(2)由AB为半圆O的直径得到∠AFB=90°,易证得△BGE∽△EGF,利用可计算出GF,然后在Rt△EGF中利用勾股定理可计算出EF.
解:(1)证明:如图,连接OD,
∵AB为半圆O的直径,D为AC的中点,
∴OD为△ABC的中位线.∴OD∥BC.
∵DE⊥BC,∴DE⊥DO.
又∵点D在圆上,∴DE为半圆O的切线.
(2)∵AB为半圆O的直径,∴∠AFB=90°.
∵DE⊥BC,∴∠GEB=∠GFE=90°.
∵∠BGE=∠EGF,∴△BGE∽△EGF.
∴.∴GE2=GFGB=GF(GF+BF).
∵GE=1,BF=,∴GF=.
在Rt△EGF中,.
科目:初中数学 来源: 题型:
【题目】九年级某班同学在“五四”游园活动中进行抽奖活动.在一个不透明的口袋中有三个完全相同的小球,把它们分别标号为A,B,C,随机摸出一个小球记下标号后放回摇匀,再从中随机摸出一个小球记下标号.
(1)请用列表或画树形图的方法(只选其中一种),表示两次摸出小球上的标号的所有结果;
(2)规定当两次摸出的小球标号相同时中奖,求中奖的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB、CD相交于点O,△AOC≌△BOD,点E、F分别在OA、OB上,要使△EOC≌△FOD,添加的一个条件不可能是( )
A. ∠OCE=∠ODF B. ∠CEA=∠DFB C. CE=DF D. OE=OF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果三角形的两个内角∠α与∠β满足2α+β=90°,那么,我们将这样的三角形称为“准互余三角形”.在△ABC中,已知∠C=90°,BC=3,AC=4(如图所示),点D在AC边上,联结BD.如果△ABD为“准互余三角形”,那么线段AD的长为_____(写出一个答案即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.
(1)将□ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段_______,_________;S矩形AEFG:S□ABCD=__________.
(2)□ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;
(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出一种叠合正方形的示意图,并求出AD、BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:
(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为 ;
(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“ ”;
(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c与x轴交于点(-1,0),顶点坐标为(1,m),与y轴交点在(0,3),(0,4)之(不包含端点),现有下列结论:①3a+b>0;②-<a<-1;③关于x的方程ax2+bx+c=m-2有两个不相等的实数根:④若点M(-1.5,y1),N(2.5,y2)是函数图象上的两点,则y1=y2.其中正确结论的个数为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点和点,与轴交于点,点是抛物线的顶点,过点作轴的垂线,垂足为,连接.
(1)求此抛物线的解析式;
(2)点是抛物线上的动点,设点的横坐标为.
①当时,求点的坐标;
②过点作轴,与抛物线交于点,为轴上一点,连接,,将沿着翻折,得,若四边形恰好为正方形,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与轴交于点,如图,作正方形,点在直线上,点在轴上,将图中阴影部分三角形的面积从左到右依次记为,则
(1)的值为___________;
(2)的值为___________.(含的代数式表示,为正整数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com